ASSOCIATION DES CYTOGÉNÉTI CIENS DE LANGUE FRANÇAISE

XXEME COLLOQUE

20-22 SEPTEMBRE 2010
PALAIS DES CONGRÈS
AIX-EN-PROVENCE

COMITÉ LOCAL D'ORGANISATION
Présidente : Anne MONCLA
Chantal MISSIRIAN
Cornélie POPOVICI
Marie-Christine PELLISSIER
Hélène ZATTARA
Marina LAFAGE

COORDINATION AVEC L'ATC
Présidente : Dominique LETESSIER
Représentante locale : Ophélie PETIT-PRENA NT
LUNDI 20 SEPTEMBRE

MATIN

8h30-9h00 Accueil des participants

SESSION PLÉNIÈRE
Modérateurs : Serge ROMANA, Déborah BOURC'HIS

9h00-10h00 EPIGÉNÉTIQUE : THÉORIE
- Mise en place de l’empreinte. D. BOURC'HIS
- Méthodes d’études en épigénétique. J. TOST

10h00-11h00 Pause café, visite de l’exposition technique et des posters

11h00-12h00 EPIGÉNÉTIQUE : APPLICATIONS
- Applications en pathologie constitutionnelle. F. MAGDINIER
- Applications en pathologie onco-hématologique. G. SOLER

12h00-13h00 ATELIER ILLUMINA

13h00-14h00 Déjeuner buffet offert par illumina’
APRÈS-MIDI : 2 SESSIONS SIMULTANÉES

SESSION 1 : DIAGNOSTIC PRÉNATAL
Salle Milhaud 1
Modérateurs : Jean-Marie RIVAL, Sylvie TAPIA

14h00-15h00
- Marqueurs du premier trimestre : mise en place et conséquence.
  - Expérience européenne. T.H. BUI
  - Expérience française. R. SAURA
  - Trophoblastes versus liquide amniotique : discordances, avantages et inconvénients.
    E. FLORI

15h00-16h00
Pause café, visite de l’exposition technique et des posters
Salle Ste Victoire
Salle Forbin

16h00-17h00
COMMUNICATION ORALES SUR LE DIAGNOSTIC PRÉNATAL

- Étude collaborative des issues de grossesse après diagnostic prénatal de syndrome de Klinefelter en France N. Gruchy, N. Leporrier (Caen), F. Viallard (Poissy), A. Choiset (St Vincent de Paul), H. Moiriot (Rouen).


SESSION 2 : ONCO-HÉMATOLOGIE

Modérateurs : Alain BERNHEIM, Marina LAFAGE

14h00-15h00
• Cytogénétique des cancers du rein. J. COUTURIER
• Raccourcissement des télosomes dans les hémopathies. E. GILSON

15h00-16h00
Pause café, visite de l’exposition technique et des posters

16h00-17h00
COMMUNICATION ORALES EN ONCO-HÉMATOLOGIE

• Analyse de la délétion d’A20 en PCR temps réel dans la Maladie de Waldenstrom. R. Ajjjou, A. Daudignon, P. Duthilleul, S. Poulain (Valenciennes), X. Lelev, C. Roumier, C. Herbaux, S. Geffroy, JL. Lai (Lille)

• Dysfonction télosomique et instabilité génomique dans la leucémie lymphoïde chronique (LLC). L. Véronèse, N. Prie, J-O Bay, P. Combes, L. Gouas, P. Vago, O. Tournilhac, T. Andrei (Clermont Ferrand)

• La réorganisation spatiale des domaines chromosomiques nucléaires induite par une infection par le virus d’Epstein-Barr pourrait intervenir dans la genèse du lymphome de Burkitt. M. Kibi M., A. Pichugin, V. Ribrag, YS. Vassetzky, M. Lipinski (Villejuif), C. Bilhou-Nabéra (Villejuif – Le Kremlin Bicêtre), SV Razin (Moscou).


• Fusion du gène MOZ/MYST3 avec le gène NCOA2/TIF2 secondaire à une inversion péricentrique du chromosome 8 masquée par un réarrangement complexe dans un cas de LAM5. AL. Mosca, B. Favre, O. Pages, P. Callier, N. Marle, J. Guy, D. Caillot, M. Maynadié, F. Mugneret (Dijon)

17h00
Assemblée générale

20h00
Soirée du Congrès offerte par
MARDI 21 SEPTEMBRE

MATIN

SESSION PLÉNIÈRE

Modérateurs : Michel VEKEMANS, Frédérique BENA

Amphithéâtre Cézanne

9h00-10h30
- Avancées sur la genèse des anomalies chromosomiques.
  - Aneuploïdies. S. ROMANA
  - Anomalies de structure. JM. DUPONT
  - Le conseil génétique dans les microremaniements identifiés en CGH-array. K. DEVRIENDT

10h30-11h00
Pause café, visite de l’exposition technique et des posters

Salle Ste Victoire
Salle Forbin

11h00-12h00
Automatisation des laboratoires. P. KLEINFINGER

12h00-13h00
ATELIER AGILENT

13h00-14h00
Déjeuner buffet offert par Agilent Technologies
APRÈS-MIDI

Modérateurs: Benoît QUILICHINI, Brigitte BENZACKEN

14h00-14h15 Quel avenir pour la cytogénétique? S. GILGENKRantz

14h15-15h15 COMMUNICATIONS ORALES : CYTOGÉNÉTIQUE CONSTITUTIONNELLE

- Modifications de l’architecture chromatinienne dans le syndrome de Roberts : nouvelles hypothèses sur la physiopathologie de ce syndrome.

- Un nouveau syndrome microdélétionnel recorrent en 14q32.2 médié par de larges motifs TGG répétés. F. Bénà, S. Gimelli, E. Migliavacca, N. Brun-Druc, S. E Antonarakis, A.J Sharp (Genève), K. Buiting (Essen)


15h15-16h00 Pause café, visite de l’exposition technique et des posters

16h00-17h00 LES NOUVEAUX OUTILS

- La CGH array. D. SANLAVILLE

- Séquençage haut débit : généralités et applications. N. LEVY

17h00-17h30 Remise des prix
RESUMES

DES

COMMUNICATIONS ORALES
Mise en place de l'empreinte

Bourc’his D.

Résumé non communiqué
Méthodes d’études en épigénétique

Tost J.

(1) Laboratory for Epigenetics, Centre National de Génotypage, CEA-Institut de Génomique, Evry
(2) Laboratory for Functional Genomics, Fondation Jean Dausset – CEPH, Paris

Pour l’analyse de la méthylation de l’ADN, des méthodes sensibles et quantitatives sont nécessaires pour détecter les moindres changements dans le degré de méthylation puisque les échantillons biologiques représentent souvent un mélange hétérogène de différentes cellules, en particulier les cellules tumorales et non tumorales issues de biopsies de tissus. Conscient de l’importance des modifications épigénétiques dans le développement et les maladies, de nombreuses techniques d’étude de la méthylation de l’ADN ont été développées ces dernières années. Aucune méthode n’a émergé comme étant la "meilleure" technique standard combinant une précision quantitative et une haute sensibilité, potentiellement réalisable pour l’analyse du génome entier et pour des études précises des positions CpG individuelles. Ainsi, le choix de la méthode dépend essentiellement de l’application souhaitée. Les méthodes peuvent être essentiellement classées en deux catégories : pangénomique et ciblée. Plusieurs générations de méthodes d’étude pangénomique ont été mises au point, s’adaptant aux différents supports d’analyse avec des niveaux croissants de résolution, alors que les approches ciblées varient en fonction de leur application. Les microarrays ont été intensivement utilisées dans la dernière décennie, mais les approches de séquençage de deuxième génération récemment mises au point ont révolutionné le domaine de l’épigénétique, car elles permettent d’étudier des modifications épigénétiques de manière impartiale et en couvrant réellement l’ensemble du génome. Alors que les premiers methylomes dotés d’une résolution d’un seul nucléotide ont récemment été obtenus en utilisant le séquençage de l’ensemble du génome bisulfité, cette technologie reste relativement chère et exigeante au niveau de l’analyse des calculs. Plusieurs approches ont donc été développées qui enrichissent, dans la plupart des cas, la fraction méthylé du génome en s’appuyant soit sur une immunoprécipitation (MeDIP-seq ou MBD-seq) soit sur une enzyme de restriction sensible à la méthylation. Le groupe épigénétique du CNG a mis en place une puissante plateforme pour identifier et valider des biomarqueurs de méthylisation de l’ADN en fonction des pathologies humaines. Le laboratoire utilise des plates-formes à haut débit existantes et disponibles au CNG permettant la découverte de gènes différemment méthylés n’importe où dans le génome. Des régions différemment méthylées sont identifiées à l’aide du MeDIP combiné avec des puces ciblant les promoteurs îlots CpG / et le séquençage de deuxième génération (Solexa / Illumina). Cette approche est complétée par un épigénotypage de l’ensemble du génome en utilisant les « panels » de méthylation GoldenGate ou Infinium d’Illumina. La validation des régions cibles potentielles est soit réalisée via une analyse quantitative à haute résolution telle que l’analyse de fusion à haute résolution (High resolution Melting ou HRM) ou le pyroséquençage, une méthode dont le laboratoire est l’un des pionniers.
Le fonctionnement normal d’une cellule à un moment et dans un tissu donné résulte d’une combinaison de mécanismes d’activation et d’inactivation finement orchestrés. La spécificité et le mode d’expression de chaque gène sont déterminés par sa séquence d’ADN à laquelle se superposent des régulations structurales et fonctionnelles au niveau de la fibre chromatinienne, dite épigénétiques. On distinguerà donc le génome stricto sensu, commun à toutes les cellules, de l’épigénome, structure dynamique, qui permet l’organisation secondaire de ce génome en chromatine. Le terme épigénétique dont dérive le terme d’épigénome est inventé en 1942 par Conrad Waddington pour désigner le mécanisme décryptant le génotype en phénotype. Dans un premier temps, l’épigénétique est invoqué dès que la génétique Mendélienne ne permet pas d’expliquer un phénomène biologique et tout les événements « bizarres » ou inexplicables sont d’essence « épigénétiques ». Face aux progrès de la biologie, ce terme prend peu à peu le sens qui lui est accordé aujourd’hui et désigne les processus héréditaires et transmissibles qui ne sont pas codés par la séquence d’ADN elle-même. Au cours des dernières années, différentes modifications épigénétiques ont été décrites et leurs implications respectives dans l’homéostasie cellulaire et la survenue de pathologies ne cessent d’augmenter.

Un grand nombre de pathologies sont liées à des anomalies génétiques affectant la séquence de gènes codants pour des protéines permettant la mise en place, l’interprétation ou la modification des marques épigénétiques. L’absence ou la perte de fonction de ces facteurs aura des conséquences globales sur l’homéostasie d’un ou plusieurs types cellulaires. Également, lors de remaniements chromosomiques, des gènes à proximité de régions réarrangées peuvent voir leur profil d’expression altéré en réponse aux modifications épigénétiques de ces régions remaniées. De plus, la présence de régions recombinées et le recrutement de facteurs de réparation risquent de perturber l’équilibre chromatiniens des régions flanquantes (effet de position).

Différents mécanismes épigénétiques seront discutés à travers des exemples de pathologies constitutionnelles.
Applications en pathologie onco-hématoïlogique

Soler G.

L'étude des anomalies génétiques des hémopathies malignes, comme les translocations chromosomiques et les mutations touchant des gènes codant des facteurs de transcription impliqués dans la différenciation hématoïdienne, a permis de mieux comprendre l'hématoïdienne physiologique et d'expliquer un certain nombre de mécanismes impliqués dans la transformation des progéniteurs hématoïdiques. Ces dernières années, l'étude des phénomènes épigénétiques a mis en évidence leur rôle crucial dans l'activation ou la répression de l'expression des gènes impliqués dans ces pathologies : méthylation aberrante de l'ADN, modifications des histones et dérégulation de l'expression des microRNA. Ces modifications épigénétiques coopèrent entre elles et avec les anomalies génétiques connues. Les méthodes d'étude globale de ces modifications épigénétiques permettent en particulier d'établir de nouvelles classifications de certaines hémopathies, comme les leucémies aiguës, pertinentes sur le plan clinique et d'identifier de nouveaux marqueurs pronostiques. En outre l'aspect réversible de ces changements ouvre un espoir important en terme de thérapeutique, avec la mise au point d'inhibiteurs spécifiques des enzymes de la machinerie épigénétique. Les essais cliniques associant les agents déméthylants ou inhibiteurs d'histone déacétylases avec les chimiothérapies conventionnelles, dans les myélodysplasies et certaines leucémies aiguës, ont d'ores et déjà fourni d'importants résultats prometteurs.
Marqueurs du premier trimestre : mise en place et conséquence
Expérience européenne

Diagnostic prénatal rapide des aneuploïdies fréquentes par QF-PCR suffisante: choix des patientes et expérience suédoise sur plus de 16.000 prélèvements

Bui T.H.

The Karolinska Institute, Department of Molecular Medicine and Surgery, Clinical Genetics Unit, & Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden.
email: the.bui@karolinska.se

L’analyse du caryotype après cultures de cellules foetales est la méthode de référence depuis 40 ans pour le diagnostic prénatal des anomalies chromosomiques. Cette technique est très fiable pour la détection, avec une résolution au niveau du microscope optique, des anomalies de nombre et de structure de tous les chromosomes de cellules foetales prélevées par chorioncentèse ou amniocentèse selon l’âge de la grossesse.

Cependant, dans de nombreux pays le dépistage combiné au premier trimestre (âge maternel + clarté nucale + PAPP-A et bêta-HCG) pour les aneuploïdies les plus fréquentes est devenu aussi une méthode de référence. Ce dépistage précoce incite logiquement au diagnostic précoce et rapide car l’étude classique du caryotype implique la culture des cellules prélevées engendrant un temps d’attente de 2 semaines en moyenne.

Les techniques rapides (FISH-interphasique, QF-PCR et MLPA) ciblent généralement les pathologies numériques des autosomes 13, 18 et 21 ainsi que celles des chromosomes X et Y avec résultats en 24-48 heures. Les avantages et limites de ces techniques rapides seront rapidement discuter.

Après une étude retrospective et validation de la QF-PCR, cette technique a été introduite depuis 2005 à Stockholm, Suède comme méthode suffisante pour certaines indications (anxiété maternelle, âge maternel avancé, dépistage combiné au premier trimestre) et le choix de la méthode d’analyse est laissé aux patientes après information des avantages et limites comparés à l’analyse du caryotype. Notre expérience des choix des patientes ainsi que les résultats obtenus sur plus de 16.000 prélèvements seront présentés.
Marqueurs du premier trimestre : mise en place et conséquence
Expérience française

Saura R., Toutain J., Dessuant H., Taine L., Horovitz J.

CHU de Bordeaux et Biomnis

A ce jour, en France, 93% des diagnostics prénatals sont effectués par amniocentèse au deuxièmeme trimestre et, seulement, 7% par choriocentèse à partir du premier trimestre. Les modifications récentes des indications du diagnostic prénatal de la trisomie 21 par les marqueurs du premier trimestre, selon les recommandations de l’HAS, viennent bouleverser les habitudes françaises en encourageant le diagnostic prénatal à partir de la choriocentèse avant 14 SA, plutôt qu’à partir de l’amniocentèse après 15 SA.

Dans notre Centre de Médecine Fœtale au CHU de Bordeaux, plus de 70% des diagnostics prénatals sont réalisés par choriocentèses, soit 10 fois plus, en moyenne, que dans les autres centres français. Pourquoi une telle différence ?

La première explication est technique : la choriocentèse est un geste difficile à effectuer qui impose que les préleveurs soient très expérimentés afin de fournir aux cytogénéticiens, avec un très faible risque iatrogène, des fragments villositaires adéquats. De leur côté, les cytogénéticiens se retrouvent le plus souvent obliger de travailler avec des prélèvements d’une quantité insuffisante et d’une qualité médiocre (biopsies souillées par des cellules maternelles et/ou des caillots sanguins). Le temps d’obtention du caryotype après culture des cellules composant l’axe mésenchymateux (examen très fiable) est alors augmenté et les cytogénéticiens peuvent se trouver obligés de réaliser l’examen « direct » (peu fiable) afin d’obtenir rapidement un caryotype pour satisfaire le prescripteur de l’examen. Les uns et les autres préfèrent finalement travailler à partir de l’amniocentèse. Au CHU de Bordeaux, plus de 25 000 choriocentèses ont été effectuées à ce jour. L’examen « direct » n’est plus réalisé de façon systématique depuis 1998 du fait d’un temps moyen d’obtention du caryotype après culture inférieur à 8 jours grâce à l’excellente quantité et qualité de nos prélèvements villositaires.

La deuxième explication est spatio-temporelle. La plupart des cytogénéticiens reçoivent des échantillons villositaires inadéquats de la part de préleveurs toujours « satisfaits » de leurs échantillons. A Bordeaux, préleveurs et cytogénéticiens travaillent de concert, sur un même site, et cela depuis plus de 25 ans ; ceci est à l’origine de fructueux échanges médicaux et humains. Au fil du temps, les techniques de prélèvements et d’examen cytogénétique ont ainsi pu évoluer : voie transcervicale puis transabdominale depuis 1988, examen « direct » puis moléculaire à partir de l’axe mésenchymateux depuis 2005... et ceci grâce à un dialogue constructif entre préleveurs et cytogénéticiens.

Nous espérons que les recommandations de l’HAS contribuent à l’avènement en France de la choriocentèse qui est un formidable outil au service du patient, et permettront de dissiper le malentendu inavoué qui perdure entre préleveurs et cytogénéticiens.
Le prélèvement de trophoblaste permet un diagnostic prénatal chromosomique au premier trimestre de la grossesse et offre une alternative à l’amniocentèse du deuxième trimestre. Cette technique est longtemps restée limitée en France en raison du risque de fausses couches et de la technique trop lourde compte tenu de la médiocre qualité de l’examen direct et de la fréquente contamination maternelle des cultures. L’intérêt du trophoblaste a été démontré ensuite par l’échographie endovaginale précoce et les marqueurs sériques du premier trimestre.

L’amniocentèse est habituellement considérée comme la technique la plus facile et la plus fiable. Les échecs de culture, les contaminations maternelles, les faux positifs ou les faux négatifs sont rares. La date du prélèvement et son résultat tardif sont ses deux inconvénients majeurs. Une amniocentèse précoce est plus risquée pour la grossesse, les échecs de culture fréquents et la culture souvent plus longue. Inversement, le diagnostic chromosomique sur trophoblaste est rapide et fiable s’il associe examen direct et culture: l’examen direct, peu résolutif, permet un diagnostic rapide grâce à l’étude des mitoses spontanées du cytotrophoblaste; il n’y a pas de contamination maternelle, mais des risques de faux positifs (1/150) et de faux négatifs (1/1000). La culture, dont les échecs sont très rares, est effectuée à partir des cellules de l’axe mésenchymateux. Le caryotype, qui permet une analyse fine de la structure des chromosomes, peut être obtenu après 6 à 8 jours, les délais étant proportionnels à la quantité de matériel mis en culture. Un lavage de la villosité évite une contamination tissulaire maternelle. Les faux négatifs sont exceptionnels.

Les difficultés d’interprétation des résultats sont essentiellement liées aux mosaïques foeto-placentaires retrouvées dans 1% des cas, aussi bien à l’examen direct qu’à la culture. Le plus souvent, elles sont résolues grâce aux données de l’examen direct et de la culture confrontées à l’échographie; le recours à des prélèvements complémentaires est rarement nécessaire.

Le deuxième facteur compliquant l’interprétation du caryotype est le niveau de résolution chromosomique qui concerne aussi bien le trophoblaste que le liquide amniotique. Un caryotype "normal" sur signes d’appel échographiques multiples peut faire discuter une CGH array.

Le choix du prélèvement doit finalement tenir compte du terme de la grossesse et des risques respectifs de l'examen et d’une anomalie chromosomique. Comme chaque technique comporte ses risques, ses avantages et ses inconvénients, il est fondamental de les maîtriser toutes parfaitement afin de pouvoir les mettre en œuvre indifféremment.
Etude collaborative des issues de grossesse après diagnostic prénatal de syndrome de Klinefelter en France


(1) Laboratoire de cytogénétique prénatale, Service de Génétique, CHU Caen
(2) Laboratoire de cytogénétique, CHI Poissy
(3) Laboratoire de cytogénétique, Saint Vincent de Paul, AP-HP
(4) Laboratoire de cytogénétique, CHU Rouen

Introduction
La découverte en prénatal d’une formule 47,XXY (syndrome de Klinefelter) est le plus souvent fortuite car elle ne s’accompagne pas a priori de malformations décelables à l’échographie. La probable infertilité liée à une dysgénésie gonadique rend le conseil génétique délicat et la poursuite ou la demande d’interruption médicale de la grossesse (IMG) de la part des parents est grandement influencée par l’information qu’ils reçoivent.

L’objectif de cette étude rétrospective est d’analyser le devenir des grossesses en France face à cette information au cours du temps en fonction de l’indication du caryotype fœtal et d’évaluer l’influence de la création en 1997 des centres pluridisciplinaires de diagnostic prénatal (CPDPN).

Matériel et méthodes
Nous avons colligé 188 cas de diagnostic prénatal de syndrome de Klinefelter (KS) entre 1985 et 2009 provenant de 11 laboratoires français parmi lesquels 161 étaient homogènes, dont l’année du diagnostic, l’indication du caryotype, les éventuels signes échographiques associés et l’issue de grossesse étaient connus.

Résultats
Les caryotypes fœtaux ont été effectués essentiellement pour âge maternel avancé (58.5%). Les autres l’ont été pour 19% sur marqueurs sériques maternels et autant (19%) pour signe d’appel échographique, ainsi que des indications sporadiques.

Nous montrons une baisse du pourcentage d’interruption médicale de grossesse (IMG) pour Klinefelter isolé au cours des années pour les 161 Klinefelter homogènes. Si l’on sépare en 2 périodes, avant et après mise en place des CPDPN, le pourcentage d’IMG passe de 43 % (24/55) à 8.5 % (9/106). Cette différence est significative (test du khi2: p <0.001).

Discussion
Les discussions entre généticiens et autres cliniciens au sein des CPDPN sont probablement à l’origine de cette baisse. La décroissance du nombre d’IMG pour KS isolé est liée à l’évolution du discours tenu aux parents. Elle coïncide avec une meilleure connaissance du suivi de ce syndrome grâce aux études longitudinales récentes. Cette baisse s’est accentuée depuis la mise en place des CPDPN en France en 1997 qui a permis de faire évoluer les mentalités autour du pronostic des dysgonosomies et de leur prise en charge.

Anomalies chromosomiques à propos de 5165 diagnostics prénataux sur signes échographiques anormaux. Evolution sur 17 ans

Rival JM.

CHU Nantes, Service de Génétique Médicale, Nantes 44093, France

Introduction
Les recommandations de l’agence de la biomédecine concernant les règles de bonnes pratiques en matière de dépistage et de diagnostic prénatal ont conduit à hiérarchiser et modifier les actes et prestations prises en charge par l’assurance maladie pour la part relative aux actes de cytogénétique constitutionnelle.

Matériel et méthodes
Nous avons analysé 5165 dossiers de prénatal chromosomique au CHU de Nantes de janvier 1992 à décembre 2009.

Résultats
785 caryotypes anormaux ont été dépistés soit dans 15,19 % des cas.

Pendant cette période, les indications pour clarté nucale augmentée, hygroma kystique, syndrome oedèmeux ont été multipliées par 2, diminuées de 1/3 pour les malformations uniques isolées, diminuées par 1/2 pour les ‘petits signes échographiques’.

Les anomalies chromosomiques décelées sont passées de 7 à 19 %.

L’auteur attire l’attention sur les situations où le risque chromosomique sur signe d’appel échographique est inférieur à celui lié à l’âge maternel, à celui des marqueurs sériques du deuxième trimestre ou à celui de toute autre indication confondue. Ces cas exclus, le pourcentage d’anomalie chromosomique dépistée serait passé à 24 %.

Ainsi, 40 % des diagnostics prénataux auraient pu être réfutés en première intention et soumis à une estimation précise du risque d’anomalie chromosomique.

Celle-ci doit reposer sur l’ensemble des données à notre disposition : âge, marqueurs sériques maternels et échographies des premier et deuxième trimestres.

L’auteur rappelle qu’il est nécessaire dans cette estimation de tenir compte non seulement du rapport de vraisemblance positif affecté à chaque signe d’appel échographique anormal, mais également du rapport de vraisemblance négatif affecté pour chacun de tous les signes échographiques retrouvés normaux.

En conclusion, les obstétriciens impliqués dans le diagnostic prénatal sont en cours d’information par leur réseau que l’épaisseur de la clarté nucale entre 3 et 3,5 mm ne devrait plus faire l’objet d’un geste invasif de première intention.

Il serait souhaitable que cette recommandation soit étendue à d’autres signes échographiques peu porteurs d’anomalie chromosomique.
Anomalies chromosomiques limitées au placenta de type 2 et de type 3 et issues de la grossesse

Toutain J. (1), Labeau-Gauzère C. (2), Barnetche T. (2), Horovitz J. (2), Saura R. (1)

(1) CHU de Bordeaux, Maternité Pellegrin, Laboratoire de cytogénétique.
(2) CHU de Bordeaux, Maternité Pellegrin, Service de Gynécologie-Obstétrique.

Objectif:
Une étude monocentrique rétrospective a été réalisée à partir de 13 807 biopsies de trophoblaste afin de tester l'influence des anomalies chromosomiques limitées au placenta de type 2 et de type 3 sur l’issue de la grossesse.

Matériel et Méthode:
Afin de caractériser les anomalies chromosomiques limitées au placenta de type 2 et de type 3, le caryotype conventionnel a été établi après culture de villosités chorales puis, de façon rétrospective, un examen « direct » de ces villosités a été effectué. Devant une anomalie chromosomique pouvant faire suspecter une anomalie chromosomique limitée au placenta de type 2 ou 3, un contrôle de la formule chromosomique a été réalisé par amniocentèse. Une disomie uniparentale a été recherchée lorsque l’anomalie chromosomique limitée au placenta impliquait les chromosomes 5, 6, 7, 9, 11, 14, 15 ou 16. L’issue de la grossesse a été évaluée à partir du terme et du poids de naissance, et les issues de grossesse défavorables ont été définies par la survenue d'une perte fœtale.

Résultats:
Cinquante sept anomalies chromosomiques limitées au placenta ont été observées (57/13 809 = 0,41%) et parmi elles, 37 étaient de type 2 et 20 étaient de type 3. L’incidence des cas de prématurité, des hypotrophies néonatales et des issues de grossesse défavorables étaient comparables entre les patientes présentant une anomalie chromosomique limitée au placenta de type 2 (nouveau-nés prématurés: 1/37 = 2,70%; hypotrophies néonatales: 6/37 = 16,2%; issues de grossesse défavorables: 1/37 = 2,70%) et la population contrôle (nouveau-nés prématurés: 21/191 = 11,0%; hypotrophies néonatales: 25/191 = 13,0%; issues de grossesse défavorables: 8/198 = 4,04 %) (p = ns). Le nombre de cas de prématurités, d’hypotrophies néonatales et d’issues de grossesse défavorables étaient plus importants pour les patientes présentant une anomalie chromosomique limitée au placenta de type 3 (nouveau-nés prématurés: 7/16 = 43,7%; hypotrophies néonatales: 12/15 = 80,0%; issues de grossesse défavorables: 4/20 = 20,0%) que pour la population contrôle (p < 10-4; p <10-4; p < 3.10-3, respectivement).

Conclusion:
Lorsqu’une anomalie chromosomique limitée au placenta est suspectée, il apparaît essentiel de caractériser le type d’anomalie chromosomique car le type 2 n’a pas d’influence sur le développement fœtal alors que les grossesses compliquées d’une anomalie chromosomique limitée au placenta de type 3 sont associées à des nouveau-nés prématurés et hypotrophies ainsi qu’à des issues de grossesse défavorables, et ce quelque soit le chromosome impliqué dans l’anomalie chromosomique limitée au placenta.
Quelle stratégie adopter pour la vérification des déséquilibres chromosomiques de grande taille détectés en CGH array : à propos d'une observation


(1) Hospices Civils de Lyon, Service de Cytogénétique Constitutionnelle, CBPE, Bron
(2) Hospices Civils de Lyon, Service de Génétique, Lyon
(3) Hospices Civils de Lyon, Service d’Anatomopathologie, Lyon
(4) APHP, Service d’Histo-Embryo-Cytogénétique, Paris
(5) CHU de Saint-Etienne, Service de Génétique, Saint-Etienne
(6) UCBL1, EA 4171, Lyon

Nous rapportons le cas d’un fœtus masculin porteur de malformations cérébrales diagnostiquées en anténatal ayant conduit à une IMG en raison de leur pronostic défavorable. L’examen fœtopathologique a confirmé l’atteinte cérébrale isolée avec une dilatation ventriculaire bilatérale, une hypoplasie globale du cervelet, des folioles de la partie supérieure du vermis et des olives bulbaires. Le corps calleux est aminci et court. L’examen de l’ensemble des autres organes a montré un développement conforme à l’âge gestationnel.

Le bilan cytogénétique a montré un caryotype fœtal 46,XY sans anomalie décelée. Une étude de l’ADN foetal par MLPA des régions télomériques avec les kits P36D et P70 a mis en évidence une délétion 6qter confirmée en FISH. L’étude en CGH array chez le fœtus, sur puce oligonucléotides 180K d’Agilent®, réalisée en post IMG, a montré une délétion 6qter d’environ 2.75 Mb qui contient plus d’une dizaine de gènes :

\[
\text{arr } 6q27(168,150,422-170,753,165)x1.
\]

L’enquête familiale est sans particularités. L’étude en cytogénétique a révélé que la mère, qui ne présente aucune pathologie connue est porteuse d’une microdélétion 6qter : 46,XX.ish del(6)(q27)(D6S2522-), cette délétion a été identifiée avec la même sonde que celle utilisée pour le fœtus.

Une étude en CGH array, sur le même type de puce, a également été proposée chez la maman, à nouveau enceinte, afin de vérifier la taille de sa délétion 6qter. La CGH array a confirmé la présence de la délétion 6qter ; elle a également montré que les deux délétions étaient de taille différente. La maman présente une délétion 6qter de seulement 500 kb [arr 6q27(170,253,232-170,753,165)x1], correspondant à la région polymorphe décrite par Redon et al. 2006, (variation_3657 de la Database of Genomic Variants).

Cet exemple soulève le problème du choix des méthodes de vérifications des variations rencontrées en CGH array. Dans le cas présent, sans les résultats de la CGH array une mauvaise interprétation du dossier aurait pu être faite, en considérant faussement la délétion 6q27 du fœtus comme héritée de sa mère et faisant ainsi douter de son caractère pathogène avec toutes les conséquences que cela comporte sur le conseil génétique.

Nous nous proposons donc de discuter les principales méthodes de vérification utilisées pour valider les variations rencontrées en CGH array et proposer une ligne de conduite afin de minimiser les risques de mauvaise interprétation.
Les chromosomes en écouvillon : un moyen efficace pour la cytogénétique des oiseaux de l’ordre des Galliformes


(1) Laboratoire de Structure et Fonction des Chromosomes - L’Université d’Etat de Saint-Pétersbourg - Saint-Pétersbourg - Russie
(2) Laboratoire de Génétique Cellulaire, INRA de Toulouse-Auzeville - Castanet Tolosan - France

L’analyse cytogénétique des caryotypes d’oiseaux est très compliquée. Le caryotype aviaire typique est constitué de 78-80 paires de chromosomes, répartis en 8-10 paires de macrochromosomes, y compris les chromosomes sexuels Z et W, ainsi que 30 paires de microchromosomes. La taille des plus grands macrochromosomes est d’environ 6-8 μm, ce qui est comparable aux chromosomes humains de taille moyenne. Les microchromosomes, indiscernables les uns des autres par les techniques classiques de cytogénétique, font en général moins de 2.5 μm, et sont très riches en gènes.

Les caryotypes aviaires apparaissent comme très stables d’une espèce à l’autre à la différence de ce qui est décrit chez les mammifères. La fréquence de réarrangements interchromosomiques est faible ; en revanche, les remaniements intrachromosomiques jouent un rôle plus important dans l’évolution des caryotypes d’oiseaux. Mais la résolution d’analyse cytogénétique obtenue avec les chromosomes mitotiques ne permet souvent pas de distinguer une inversion péricentrique ou un déplacement centromérique.

Les chromosomes en écouvillon s’observent au stade diplotène au cours de l’ovogénèse et présentent l'intérêt d'être 20 à 30 fois plus longs que les chromosomes mitotiques, d’avoir une grande activité de transcription et de permettre de visualiser les événements de recombinaison par la présence de chiasmas. Le recours aux chromosomes en écouvillon semble particulièrement pertinent chez la poule dans le cas de microchromosomes qui sont peu ou pas représentés dans l’assemblage actuel de la séquence génomique de poulet. Ainsi, pour le microchromosome 16, la détermination de la position du centromère par des anticorps dirigés contre la protéine STAG2, suivi de la localisation en FISH de séquences répétées et de clones BAC contenant des marqueurs génétiques ont permis d’une part d’établir une carte cytogénétique haute résolution, d’autre part de positionner des points chauds de recombinaison et de les mettre en relation avec la présence de séquences répétées comme PO41.

L’analyse comparative des macrochromosomes en écouvillon 1 et 3 de la poule et de la caille a montré que ces chromosomes ne diffèrent pas par une inversion péricentrique comme on l’avait estimé en utilisant la cartographie des clones BAC sur les chromosomes mitotiques, mais par l’apparition d’un néocentromère.

Ce travail a été réalisé grâce aux financements de la Fondation d’Etudes Fondamentales de Russie (projet 08-04-00493).
Cytogénétique et génomique des tumeurs du rein


(1) Unité de Génétique somatique / Cytogénétique et Plateforme Hospitalière de Génétique Moléculaire INCa, Institut Curie, Paris
(2) Services d'Anatomie pathologique, Hôpital Saint-Joseph et Hôpital Cochin, Paris

Les tumeurs à cellules rénales forment un groupe hétérogène constitué essentiellement des carcinomes à cellules rénales (CCR) à cellules claires (75% des cas) et des CCR papillaires de type 1 (10%), de diagnostic histologique, en règle, aisé. Cependant, 10% des tumeurs rénales posent des problèmes de classification, voire de diagnostic de malignité, en raison de caractéristiques histologiques chevauchantes ou combinées entre les types, d’une morphologie atypique, ou de l’expression ambiguë de marqueurs immunohistochimiques.

Les anomalies chromosomiques caractérisant les principaux types de tumeurs rénales ont permis de préciser leur classification; les tumeurs se répartissent globalement en types à déséquilibres génomiques systématisés, et types à translocations de gènes TFE (famille MiT), pour les carcinomes juvéniles (Tableau 1). L’analyse caryotypique permet de reconnaître les anomalies chromosomiques caractéristiques, mais, compte tenu de ses limitations et en fonction du type d’altérations à identifier, elle tend à être supplantée en routine par les techniques d’analyse pangénomique, la RT-PCR et/ou la FISH. Les tumeurs potentiellement à déséquilibres génomiques sont analysées par CGH- ou SNP-array. Les profils des CCR de type 2 apparaissent hétérogènes, un sous-groupe d’entre eux paraissant correspondre à des CCR de type 1 évolués sur le plan génomique. Les carcinomes juvéniles sont caractérisés par deux types de translocations. Le premier implique le gène TFE3 situé en Xp11.2, qui peut être transloqué aux gènes PRCC, SFPQ, et ASPSCR1, pour les récurrents. Le second implique TFEB, situé en 6p21, placé sous la dépendance de l’activité promotrice du gène Alpha, localisé en 11q13. Le diagnostic moléculaire de ces remaniements a été développé. Pour les translocations TFE3, une RT-PCR multiplexe en temps réel permet de tester en une seule étape l’ensemble les variants connus, tandis que pour les t(6;11) une analyse par FISH détecte les altérations du locus TFEB.

Ainsi, le développement d’un panel de techniques applicables en routine doit permettre de classifier les types tumoraux de diagnostic histologique difficile quelque soit le type de prélèvement disponible. Les CCR sont l’un des rares exemples de carcinomes dont la cytogénétique est informative. L’intégration progressive des données issues de la génétique moléculaire devrait permettre à terme d’optimiser la prise en charge des patients, par une meilleure évaluation du pronostic et la possibilité de la détermination de l’éligibilité à une thérapeutique spécifique.

<table>
<thead>
<tr>
<th>Type tumoral</th>
<th>Anomalies caryogénétiques récurrentes</th>
<th>Gènes impliqués</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCR à cellules claires</td>
<td>del(3p), der(3)t(3;5), -14</td>
<td>VHL, ?</td>
</tr>
<tr>
<td>CCR papillaire type 1 et type 2 dérivé</td>
<td>-Y, +7, +17, +12, +16, +20…</td>
<td>?</td>
</tr>
<tr>
<td>CCR papillaire type 2</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>CCR tubulo-mucineux</td>
<td>-1, -4, -6, -8, -9, -13, -14, -15, -22</td>
<td>?</td>
</tr>
<tr>
<td>CCR chromophobe</td>
<td>-1, -2, -6, -10, -13, -17, -21</td>
<td>?</td>
</tr>
<tr>
<td>Oncocytome</td>
<td>-Y, -1 (1p), -14</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>t(11;…)(q13;…)</td>
<td>?</td>
</tr>
<tr>
<td>CCR à translocation MiTF/TFE</td>
<td>t(X;1)(p11.2;q23.1) t(X;1)(p11.2;p34.3) t(X;17)(p11.2;q25.3) t(6;11)(p21.1;q12)</td>
<td>PRCC-TFE3 SFPQ-TFE3 ASPSCR1-TFE3 Alpha-TFEB</td>
</tr>
</tbody>
</table>

Tableau 1. Anomalies chromosomiques caractéristiques des carcinomes à cellules rénales (CCR) de l’adulte et oncocytes.
Raccourcissement des télomères dans les hémopathies

Gilson E.

Résumé non communiqué
Analyse de la délétion d'A20 en PCR temps réel dans la maladie de Waldenstrom


(1) Service d'Hématologie Immunologie Cytogénétique, CH de VALENCIENNES
(2) Service des Maladies du Sang, CHRU de LILLE
(3) U837/ CHRU de LILLE

Introduction
La maladie de Waldenstrom (MW) est une hémopathie lymphoïde B définie par la présence d’un pic monoclonal de type IgM et une infiltration lymphoplasmocytaire médullaire. L’anomalie cytogénétique la plus fréquente est la délétion 6q. En 6q23 se situe A20, un inhibiteur de la voie NFKB. Notre objectif est d’analyser par technique de Copy Number Assays (CN) en PCR temps réel la délétion d'A20 dans une cohorte de 31 patients atteints de WM et de comparer ces résultats avec ceux obtenus en cytogénétique conventionnelle, en FISH et en puces à SNP

Matériel et Méthodes
Les caryotypes ont été établis à partir de prélèvement de moelle osseuse (MO) après une stimulation par DSP30 et IL2. Les délétions 6q ont été recherchées par FISH (6q23 MYB, Aquarius). Pour les analyses en puces à SNP et CN, l’ADN a été extrait après sélection des cellules CD19 des prélèvements de MO de 31 patients (pts) atteints de MW. Chez 27 pts, un couple d’échantillons homologues (tumeur / lymphocytes T, isolés du sang) a été utilisé pour caractériser les anomalies somatiques acquises par puces Genome-Wide Human SNP Array 6.0 (Affymetrix chips). Une amplification de type WGA (Whole genomic amplification) a été réalisée. Les techniques de PCR en temps réel ont utilisé les kits Copy Number prédessinés ciblant A20 et le gène de référence, RNaseP (Applied Biosystems).

Résultats
L’analyse des échantillons d’ADN amplifiés par WGA (12) et non amplifiés (25) extraits des lymphocytes T a permis de définir le seuil de positivité pour la technique de CN A20, respectivement de 1,57 et 1,75. Une délétion d’A20 a été observée dans 28% des cas (8 / 29). Cependant 2 cas de discordance ont été observés après amplification WGA par rapport aux résultats sur ADN génomique. La délétion du locus d'A20 et de MYB était parallèlement mise en évidence par puce à SNP chez 9/31 des patients. En cytogénétique conventionnelle, une délétion 6q a été mise en évidence dans 15% des cas interprétables (4/26). La FISH a permis de détecter la délétion 6q23 (MYB) chez 8/29 patients étudiés. Une concordance totale entre les résultats de FISH, puces à SNP et CN a été observée.

Conclusion
La technique d’analyse de gènes cibles par technique Copy Number Assays permet une quantification du nombre de copie du gène d’intérêt, A20. Toutefois, la sensibilité de cette technique en cas de sous clones porteurs de délétions d’A20 reste à définir.
Dysfonction télomérique et instabilité génomique dans la leucémie lymphoïde chronique (LLC)


(1) Service de Cytogénétique Médicale ; CHU Estaing, Clermont-Ferrand, F-63003, France
(2) Service d’Hématologie Clinique Adulte - Thérapie Cellulaire ; CHU Estaing, Clermont-Ferrand, F-63003, France

Introduction :
Les télomères sont des complexes nucléoprotéiques situés à l’extrémité des chromosomes pour assurer la stabilité globale du génome. Ils sont formés d’un nombre variable de séquences répétées, déterminant la longueur du télomère, associées à des protéines télomériques spécifiques, comme la protéine TRF1. Le maintien des télomères dans les cancers est principalement assuré par une enzyme spécialisée, la télomérase. Dans la LLC, la longueur des télomères et le niveau d’expression de la sous-unité catalytique de la télomérase (hTERT) constituent des facteurs de pronostic corréls à la survie des patients, la présence de télomères courts et d’une activité télomérasique étant associée aux LLC de mauvais pronostic. Par ailleurs, l’existence de variations dans l’expression de nombreux gènes impliqués dans le maintien des télomères suggère l’existence d’une dysfonction télomérique globale pouvant participer à la survenue d’anomalies cytogénétiques à valeur pronostique. L’objectif de notre travail est d’étudier dans cette hémopathie la relation entre la présence d’une dysfonction télomérique et l’existence d’anomalies cytogénétiques, reflet de l’instabilité génomique.

Matériels et Méthodes :
Nous avons quantifié la longueur des télomères par PCR en temps réel et le niveau de l’expression de hTERT et TRF1 par RT-PCR en temps réel dans les lymphocytes sanguins de 72 patients atteints de LLC. Les résultats ont été corréls à la présence d’anomalies caryotypiques et de déséquilibres génomiques recherchés par FISH sur noyaux interphasiques (délétion 17p13, 11q22, 13q14.3 et trisomie 12).

Résultats :
Nous démontrons que le raccourcissement des télomères, une expression forte de hTERT et une expression faible de TRF1 sont associés à la complexité d’anomalies caryotypiques. Les télomères sont significativement plus courts (p=0,000088), l’expression de hTERT plus forte (p=0,0017) et l’expression de TRF1 plus faible (p=0,035) chez les patients présentant au moins 2 anomalies cytogénétiques, par rapport aux patients présentant une anomalie isolée ou un caryotype normal. Les anomalies mises en évidence par FISH ont été séparées en groupes de pronostic favorable, intermédiaire et défavorable. Les télomères sont d’autant plus courts et le niveau d’expression de TRF1 d’autant plus faible que les anomalies ont une valeur pronostique péjorative (p=0,000099 et p=0,0011, respectivement). La présence d’anomalies génomiques de pronostic intermédiaire ou défavorable est également associée à l’activation de hTERT (p=0,0093).

Conclusion :
L’existence d’une dysfonction télomérique avec raccourcissement des télomères, activation de la télomérase et diminution de l’expression de TRF1 est associée à l’instabilité génomique dans la LLC et à la survenue d’anomalies chromosomiques à valeur pronostique péjorative.
La réorganisation spatiale des domaines chromosomiques nucléaires induite par une infection par le virus d'Epstein-Barr pourrait intervenir dans la genèse du lymphome de Burkitt

Klibi M. (1), Pichugin A. (1), Ribrag V. (3), Bilhou-Nabéra C. (1)(4), Lipinski M. (1), Razin SV. (2), Vassetzky YS. (1)

(1) UMR8126, CNRS, Institut de Cancérologie Gustave Roussy, Université Paris XI Sud, Villejuif, France
(2) Department of Structural and Functional Organization of Chromosomes, Institute of Gene Biology RAS, 119334 Moscow, Russia
(3) Institut de Cancérologie Gustave Roussy, Villejuif, France
(4) Laboratoire d'Hémato Logie, CHU de Bicêtre, Le Kremlin-Bicêtre, France

Introduction :
Le lymphome de Burkitt (BL) est un lymphome malin non hodgkinien classiquement caractérisé par une translocation impliquant l’oncogène C-MYC (8q24) et l’un des gènes de la famille des immunoglobulines (gène des chaînes lourdes d’immunoglobulines IGH (14q32) principalement ou gènes des chaînes légères IGK (2p12) ou IGL (22q11)). La conséquence de ces translocations est une surexpression de l’oncogène CMYC. Dans de nombreux cas, en particulier dans le BL endémique de l’enfant africain et chez les patients atteints d’immunodéficience acquise, ce lymphome est associé à une infection par le virus d’Epstein-Barr (EBV).

Outre la mise en contiguïté de la région amplificatrice IGH à proximité de CMYC à l’origine d’une dérégulation de l’expression de CMYC, l’hypothèse d’une modification de la localisation nucléaire de CMYC migrant de la périphérie nucléaire vers le centre du noyau au contact d’IGH (physiologiquement localisé à proximité d’un nucléole), a également été avancée. Cette délocalisation de CMYC serait à l’origine de son activation. Une infection par le virus EBV, induisant la prolifération lymphocytaire, pourrait être considérée comme un facteur favorisant cette délocalisation nucléaire. Pour démontrer cette hypothèse, nous avons étudié la localisation intranucléaire des gènes CMYC et IGH dans les lymphocytes B non infectés et infectés par EBV.

Méthodes :
Les cellules lymphocytaires B, issues de cytaphérèses, ont été isolées par sélection positive avec un tri sur billes magnétiques couplées à un anticorps antiCD20 (Miltenyi Biotec, France). Après hybridation in situ avec des sondes IGH et CMYC (Abbott), puis analyse tridimensionnelle par microscopie confocale, les distances respectives 1/entre chaque gène d’intérêt, 2/entre chaque gène et la membrane nucléaire et 3/ entre chaque gène et le nucléole ont été évaluées à l’aide d’un logiciel développé en collaboration avec l’INRA (Jouy en Josas).

Résultats :
Dans les lymphocytes non infectés, CMYC est localisé en périphérie nucléaire et IGH au centre du noyau. Une colocalisation nucléaire des deux gènes n’est retrouvée que dans 3% des noyaux analysés. Après infection lymphocytaire in vitro par EBV, CMYC migre vers le centre du noyau et une colocalisation CMYC-IGH est observée dans 15% des noyaux (x5).

Conclusion :
EBV apparaît comme un facteur induisant la délocalisation de CMYC à proximité d’IGH. Cette colocalisation génique favoriserait-elle la survenue d’une translocation ? Nous étudions actuellement le rôle des protéines spécifiques d’EBV dans l’induction de ce remaniement nucléaire.
Evaluation des déséquilibres génomiques par hybridation génomique comparative dans les tumeurs de l’endomètre


(1) CHU- Hôpital Maison Blanche- Service de Génétique et Biologie de la reproduction- Reims
(2) CHU- Services de Gynécologie- Obstétrique- Reims
(3) CHRU- Hôpital Jeanne de Flandre- Laboratoire de Génétique Médicale- Lille
(4) CHU- Laboratoire Pol BOUIN- Service d’histologie et cytologies normales et pathologiques- Reims

Le cancer de l’endomètre est un cancer fréquent situé au 3ème rang chez la femme en Europe. Son pronostic est réputé favorable car il est souvent dépisté précocement. Le risque d’extension à distance et de récidive est corrélé à certains facteurs histopronostiques qui se révèlent néanmoins insuffisants pour prédire l’évolution de ces patientes dans près d’un tiers des cas. Nous avons donc étudié par caryotypage standard et moléculaire les anomalies génomiques afin de caractériser des zones d’intérêts potentiellement corrélées au pronostic.

Pendant une période de 6 mois, 23 patientes présentant une hyperplasie (n=6) ou un cancer de l’endomètre (n=17) ont été incluses dans un protocole de recherche qui visait à identifier des déséquilibres quantitatifs génomiques par hybridation génomique comparative. Les ADNs issus de tissu endométrial ont été hybridés sur une puce oligonucléotidique Agilent® 4x44K versus un pool d’ADN de tissus endométriaux sains. En parallèle, un caryotype standard a été réalisé sur le tissu tumoral lorsque la masse tumorale était suffisante.

L’analyse en CGH-array a mis en évidence la présence de déséquilibres pour : 3 hyperplasies sur 6 (50%) et 13 tumeurs sur 17 (76%). De façon intéressante, les anomalies visualisées par le caryotype standard et par la CGH-array sont mal corrélées. Ces différences peuvent être expliquées par un biais de prélèvement, un biais de culture, un faible mosaïcisme (< 20%) et la présence de déséquilibres cryptiques.

Dans notre étude, les chromosomes les plus souvent remaniés dans les tumeurs de l’endomètre sont les chromosomes 1, 8, et 17. Les types de remaniements chromosomiques retrouvés sont principalement des trisomies (trisomies 8) et des délétions et duplications (partielles ou complètes) de bras de chromosomes et impliquant les régions 8q24 (C-MYC) et 17q13.1 (TP53). Des déséquilibres inférieurs à 1 Mégabase concernaient des régions comprenant notamment les gènes hTERT, RAD51C, et E2F1.

En conclusion, cette étude montre l’intérêt de la CGH-array pour l’identification et la caractérisation de régions d’intérêt comprenant des gènes potentiellement impliqués dans cette pathologie. Il serait intéressant de compléter ces résultats génomiques par un plus grand nombre de tumeurs en recherchant au sein de ces mêmes tumeurs l’expression des gènes de la carcinogénèse endométriale.
Fusion du gène MOZ/MYST3 avec le gène NCOA2/TIF2 secondaire à une inversion péricentrique du chromosome 8 masquée par un réarrangement complexe dans un cas de LAM5


(1) Hôpital du Bocage, Plateau Technique de Biologie, Laboratoire de Cytogénétique, CHU Dijon
(2) Hôpital du Bocage, Plateau Technique de Biologie, Laboratoire d'Hématologie, CHU Dijon
(3) Hôpital du Bocage, Service d'Hématologie Clinique, CHU Dijon

Le gène MOZ/MYST3 est situé dans la région 8p11.12 qui est le lieu d'anomalies récurrentes associées à des LAM de type 4 et 5. Ses partenaires les plus fréquents sont CBP (t(8 ;16)(p11 ;p13)), p300 (t(8 ;22)(p11 ;q13)) et TIF2 par inversion péricentrique inv(8)(p11q13).

Nous rapportons le cas d’un patient âgé de 34 ans adressé suite à la découverte d’une panmyéloplasie dans le cadre d’une altération du polymorphisme du chromosome 8. Devant cette suspicion de leucémie aiguë myéloidé, un myélogramme est demandé, il met en évidence une moelle riche en cellules blastiques myéloïdes monomorphes. Les estérases sont faiblement positives, il n’y a pas de corps d’Auer mais des stigmates d’érythrophagocytose. Les marqueurs immunologiques mettent en évidence une population de phénotype myéloïde. L’ensemble cytologique et immunologique est donc en faveur d’une LAM5B. Le caryotype médullaire met en évidence une anomalie complexe du chromosome 8 : duplication d’une partie du bras long du chromosome 8 sur le bras court délété. Une inversion péricentrique du chromosome 8 masquée par un réarrangement chromosomique complexe est suspectée. La réalisation d’une peinture des chromosomes 8 et 16 a permis d’éliminer la translocation t(8 ;16) et a montré que le dérivé du 8 était peint sur sa totalité et donc composé uniquement de matériel de chromosome 8. La Multi-bande du chromosome 8 a ensuite confirmé la délétion partielle du bras court et duplication partielle du bras long du chromosome 8. L’étude FISH utilisant les BACs situés dans les loci des gènes MOZ et TIF2 a montré une fusion de ces 2 gènes en 8q13 secondaire à une inversion péricentrique mais a également montré une duplication inversion de TIF2.

Le caryotype s’écrit : 46, XY, der(8)(8qter->8p11.2 ::8q13->8qter).ishder(8)(wcp8+).

Ce travail rapporte le premier cas d’inversion péricentrique complexe du chromosome 8 associée à une duplication partielle du bras long et une délétion partielle du bras court masquant la fusion des gènes MOZ et TIF2. Ce cas est comparé aux autres inversions péricentriques du 8 décrites dans la littérature. Les anomalies du chromosome 8 associées à une LAM5 avec érythrophagocytose doivent faire rechercher l’implication du gène MOZ.
Avancées sur la genèse des anomalies chromosomiques - Aneuploïdies

Romana S.

Résumé non communiqué
Mécanismes de survenue des anomalies chromosomiques de structure

Dupont JM.

Laboratoire de Cytogénétique, Groupe Hospitalier Cochin Saint Vincent de Paul, APHP ; Université Paris Descartes, Faculté de Médecine ; U567 INSERM-UMR 8104 CNRS (Institut Cochin) Equipe 21 - Paris

Les anomalies de structure des chromosomes résultent d’une erreur de réparation de cassures physiologiques ou pathologiques de l’ADN. Différents mécanismes de réparation coexistent, faisant ou pas appel à la recombinaison homologue.

La recombinaison homologue est le processus le plus fiable parce qu’elle est basée sur une restauration du brin cassé à partir de la séquence homologue présente soit sur la chromatide soeur, soit sur le chromosome homologue.

Quand une recombinaison est impossible, un deuxième mécanisme ne nécessitant pas (ou très peu) d’homologie permet une réassociation directe des extrémités des brins cassés (NHEJ = Non Homologous End Joining). Ce processus induit souvent une « cicatrice » au point de cassure caractérisée par la perte ou le gain de quelques nucléotides.

Plus récemment, un nouveau mécanisme de réparation des cassures a été proposé pour expliquer certaines anomalies complexes mises en évidence en CGH array. Ce processus est basé sur le mécanisme permettant chez la levure de relancer la réplication après un blocage de la fourche de réplication via l’invasion d’un ADN double brin par l’extrémité 3’ libre (FoSTeS = Fork Stalling and Template Switching). Chez les eucaryotes, deux variantes de ce mécanisme réplicatif ont été proposées permettant la poursuite de la réplication malgré une cassure induite par l’arrêt de la fourche de réplication :

- un changement de matrice via une homologie de séquence importante (rejoignant la fiabilité des mécanismes basés sur la recombinaison homologue) = BIR (Break Induced Replication) ;
- un changement de matrice avec peu d’homologie de séquence (quelques dizaines de nucléotides suffisent) = MMBIR (Microhomolgy Mediated Break Induced Replication). Ce mécanisme favorise les réarrangements multiples et peut être à l’origine des anomalies complexes observées quand plusieurs changement de matrice surviennent successivement avant le retour au brin original.

La redondance des mécanismes de réparation permet aux cellules eucaryotes de survivre aux altérations de leur patrimoine génétique, mais l’organisation du génome in vivo peut favoriser certaines erreurs de réparation et conduire à la formation d’anomalies chromosomiques. Parmi ces anomalies, certaines sont récurrentes, favorisées par les recombinaisons alléliques non homologues entre séquences de très forte homologie (LCR = Low Copy Repeat), qui lorsqu’elles sont utilisées en lieu et place de la séquence d’origine peuvent conduire à des réarrangements chromosomiques à type de délétion, duplication, inversion ou translocation (NAHR = Non Allelic Homologous Recombination).. Les anomalies par défaut de la réplication sont favorisées par la structure particulière de la fibre d’ADN dans certaines régions (ADN non B, palindromes, structures cruciformes…) qui peut entraîner un arrêt ou un désassemblage de la fourche de réplication, réparée d’autant plus volontiers par un mécanisme de changement de matrice que la cellule est soumise à un stress diminuant ses capacités de recours à la recombinaison homologue.

Enfin, il convient de garder à l’esprit que ces phénomènes surviennent dans le contexte d’une architecture spatiale très organisée du noyau interphasique, où les interactions entre séquences homologues ou non nécessitent une proximité physique comme l’atteste la corrélation entre le pourcentage de recouvrement de deux territoires chromosomiques et la fréquence des translocations entre ces deux paires de chromosomes.
Le conseil génétique dans les microremaniements hérités ou non, identifiés par CGH-array

Devriendt K.

Center for Human Genetics, Catholic University of Leuven, Leuven, Belgique

En cytogénétique traditionnelle, la majorité des remaniements chromosomiques entraînant un phénotype sont de novo ou, plus rarement, héritées d’un parent affecté. Le conseil génétique est devenu beaucoup plus difficile depuis l’introduction de CGH-array. Nous allons discuter des problèmes de conseil génétique posés dans trois différentes situations. En premier lieu, étant donné qu’on obtient une résolution de plus en plus haute, on détecte un nombre croissant de variantes non classées et sur lesquelles on ne dispose pas actuellement de suffisamment d’informations pour déterminer si ces variantes sont cliniquement significatives ou non.

Deuxièmement, on a des découvertes fortuites constituées par des remaniements qui ne sont pas directement pertinents pour le problème que présente le patient, mais qui peuvent néanmoins avoir une importance clinique pour l’individu ou sa famille. Des exemples typiques dans ce sens incluent la délétion d’un gène suppresseur de tumeur ou un gène impliqué dans une maladie à déclenchement tardif (p. ex. le gène HNF1B et MODY5). Enfin, il est devenu évident que de nombreux remaniements sont en fait des facteurs de susceptibilité, associés à un risque accru, souvent pour une variété de troubles du développement comprenant le retard mental, l’autisme, la schizophrénie ou l’épilepsie. Des exemples de ce type incluent la del & dup 1q21.1, la del16p13.3 et la del & dup16p11.1. Ces micro remaniements peuvent survenir de novo, mais une proportion importante est héritée d’un parent peu affecté ou même normal. La pénétrance réduite et l’expressivité variable de ces variations en nombre de copies (VNC) est un défi majeur pour l’intégration de ces tests dans le conseil génétique.
Automatisation des laboratoires

Kleinfinger P., Mossafa H., Bazin A., Ardalan A., Trost D., Montagnon M., Lohmann L.

Laboratoire Cerba, Saint-Ouen l’Aumone

Il existe aujourd’hui de très nombreux automates, permettant de couvrir quasiment l’ensemble du processus pour la réalisation d’un caryotype en cytogénétique conventionnelle et moléculaire. Une enquête réalisée par l’ACLF en 2006 montrait que si 89% des laboratoires avait déjà été confrontés à la mise en place d’un automate sous la forme d’une station de capture, seulement 12% d’entre eux possédaient un chercheur de métaphase et 7% un automate de choc/fixation, c’est à dire que la l’essentiel de l’automatisation de la technique restait à faire pour la grande majorité des laboratoires.

Le sujet de cette présentation n’est pas de réaliser le catalogue des avantages et inconvénients de l’ensemble des automates maintenant à notre disposition, mais de partager notre expérience pour l’automatisation d’un laboratoire de cytogénétique.

L’automatisation permet différentes améliorations de la technique. Il est donc indispensable de déterminer ce que l’on veut améliorer et comment mesurer cette amélioration.

L’automatisation peut contribuer à une amélioration de la qualité grâce à :

- une plus grande précision du geste comme par exemple l’utilisation d’un automate de distribution des réactifs de choc et fixation permettant un timing de distribution beaucoup plus précis,
- une plus grande répétabilité du geste, comme par exemple un automate d’étallement des culots cellulaires permettant de diminuer la grande variabilité opérateur dépendante de cette étape technique,
- une diminution des causes d’erreur comme par exemple l’utilisation de douchettes permettant une lecture automatique de codes à barres utilisés pour l’identification des flacons de cultures et des lames.

Certains automates permettent d’augmenter la rentabilité d’une étape technique. Je citerai comme exemple l’automate permettant de réaliser les étapes de fixation pour les caryotypes sanguins. Lors du calcul du temps gagné, il ne faudra pas oublier de prendre en compte le temps de maintenance de l’automate, la prise en charge d’éventuelles pannes, la nécessité de rajouter d’autres étapes techniques comme par exemple de transvaser les culots dans un autre contenant, etc … Parallèlement à la mesure du temps gagné, il est nécessaire de mettre également en place des éléments objectifs du maintien de la qualité technique.

De nombreux automates permettent de gagner en convivialité, en particulier en diminuant les étapes techniques très répétitives et laborieuses, permettant de dégager de la disponibilité pour les étapes critiques nécessitant un véritable savoir faire.
Quel avenir pour la cytogénétique ?

Gilgenkrantz S.

« L’avenir, c’est du passé en préparation » a dit un humoriste.
C’est sans doute la raison pour laquelle les organisateurs du programme ont intitulé ainsi ma présentation. Car, de l’avenir, comme vous pouvez l’imaginer, je serais bien en peine de vous parler.

En revanche, évoquer le travail des « pionniers », de leurs aspirations et de leurs luttes, relater comment la cytogénétique humaine s’est ramifiée - constitutionnelle, prénatale, hématologique, oncologique... - et comment, des 46 chromosomes laborieusement appariés, on en est venu aux techniques quantitatives, sophistiquées, moléculaires, voilà qui ouvre grand les portes sur l’avenir.

Enfin, à l’instar des Britanniques avec Peter Harper qui vient d’organiser un Witness Seminar de génétique au Wellcome Trust Centre for the History of Medicine, le temps ne serait-il pas venu de recueillir dans les archives de l’ACLF documents et souvenirs de ceux qui ont ouvert la voie à la cytogénétique humaine ?
Modifications de l'architecture chromatinienne dans le syndrome de roberts: Nouvelles hypothèses sur la physiopathologie de ce syndrome

Dupont C. (1,2), Kraoua L. (2), Bucourt M. (1), Smiljnivoic D. (3), Le Tessier D. (3), Lebugle C. (4), Bourdoncle P. (4), Gerard B. (2), Benzacken B. (1,2), Dupont JM. (3)

(1) Service d'Histologie Embryologie Cytogénétique et Biologie de la Reproduction- Hôpital Jean Verdier, AP-HP, Bondy, France ; UFR-SMBH, Paris XIII, France
(2) Département de Génétique - Hôpital Robert Debré, AP-HP, Paris, France
(3) Laboratoire de Cytogénétique - Hôpital Cochin, AP-HP; Université Paris-Descartes, Faculté de Médecine; INSERM U 1016 - CNRS UMR 8104 ; 75014 Paris, France
(4) Plateforme d'imagerie cellulaire - Institut Cochin, 75014 Paris, France

Introduction:
Le syndrome de Roberts, décrit pour la première fois en 1919, est une affection autosomique récessive rare qui associe retard de croissance, anomalies réductionnelles des membres et dysmorphie cranio-faciale. Récemment des mutations du gène ESCO2 situé en 8p21.1 (gène humain homologue d’une cohésine de la levure) ont été retrouvées dans plusieurs familles atteintes de syndrome de Roberts. Nous rapportons le cas d’un fœtus mort in utero à 18 SA avec suspicion phénotypique de syndrome de Roberts.

Matériel et Méthode, Résultats:
L’examen foetopathologique a montré chez ce foetus une tétraphocomélie avec oligodactylie, une dysmorphie cranio-faciale caractéristique avec hypoplasy de l’étage moyen et saillie des globes oculaires. Un caryotype a été effectué devant la suspicion clinique de syndrome de Roberts et l’analyse cytogénétique des cultures fibroblastiques de ce foetus a montré un aspect caractéristique des chromosomes avec un aspect des chromatides en « rail de tramways », une absence de constriction primaire touchant essentiellement les chromosomes riches en hétérochromatine (1, 9, 16, 19), des images de répulsion des chromatides, et un aspect caractéristique en bandes C avec dédoublement des centromères et « puffing » de l’hétérochromatine.

Le diagnostic de syndrome de Roberts a été confirmé par l’analyse moléculaire du gène ESCO2 qui a retrouvé deux mutations situées sur des sites d’épissage chez ce foetus de parents non consanguins : une mutation connue (intron 5) et une nouvelle mutation jamais décrite auparavant (exon3).

Par ailleurs, les cellules de ce fœtus ont été analysées en microscopie confocale après une technique de FISH 3-D utilisant des sondes spécifiques de l’hétérochromatine de certains chromosomes. L’objectif de cette technique était d’observer le comportement de ces structures chromosomiques, atteintes dans cette pathologie, au sein du noyau en interphase. Les résultats de cette analyse ont montré une modification statistiquement significative de la localisation intranucléaire notamment de l’hétérochromatine péricentromérique du chromosome 1 dans les cellules du foetus atteint par rapport à des cellules normales.

Discussion, Conclusion :
Le lien entre les mutations d’ESCO2 et le phénotype cellulaire du syndrome de Roberts (principalement la perte d'une cohésion efficace des chromatides sœurs) est bien connu. En revanche, il est difficile de comprendre comment ce défaut de cohésion est responsable des différents symptômes du syndrome de Roberts. Il existe probablement une régulation particulière de l'expression de certains gènes et nos résultats permettent de soulever plusieurs hypothèses permettant d'avancer dans la compréhension de la physiopathologie de cette maladie.
Un nouveau syndrome microdélétionnel recurrent en 14q32.2 médié par de larges motifs TGG répétés


(1) Service de Médecine Génétique, Hôpital Universitaire de Genève, Genève, Suisse
(2) Service de pédiatrique Générale, Hôpital Universitaire de Genève, Genève, Suisse
(3) Institut für Humangenetik, Universitätsklinikum Essen, Essen, Allemagne
(4) Département de médecine Génétique et Développement, Université de Genève, Genève, Suisse

Les syndromes microdélétionnels/duplicationnels, décrits à ce jour, sont presque tous, caractérisés par la présence de Low Copy Repeat, qui sont des substrats pour les mécanismes de recombinaison Homologues Non-alléliques (NAHR) conduisant à une perte, un gain ou l’interruption de gènes sensibles à la dose.

Nous décrivons, chez deux patientes, une délétion hétérozygote identique de la région 14q32.2 qui emporte le cluster de gènes soumis à empreinte DLK1/GTL2. Chez les deux patientes, le chromosome délété est d’origine paternel conduisant à des signes cliniques compatibles avec ceux décrits dans la disomie uniparentale maternel du chromosome 14. En utilisant un microarray customisé ciblé de la région des points de cassure, nous avons cartographié ces derniers au sein de larges répétitions en tandem (TGG)n, qui mesurent environ 500 pb et partagent 88% d’homologie entre eux. Ces motifs (TGG)n présentent des caractéristiques communes avec des sites fragiles décrits et sont prédisposés à former des structures secondaires de type guanine quadruplex. Nous suggérons que cette délétion récurrente soit médiée soit par un mécanisme de type NAHR entre les répétitions TGG ou de manière alternative résulte de l’instabilité inhérente des TGG et/ou en raison de leurs structures secondaires.

Nos résultats définissent un nouveau syndrome microdélétionnel récurrent en 14q32.2 médié par des répétitions (TGG)n flanquantes qui définit un nouveau mécanisme de réarrangement génomique récurrent.
Le groupe des avances staturales (AS) syndromiques comprend de nombreux syndromes tels que les syndrome de Sotos ou de Weaver mais également de nouveaux phénotypes cliniquement reconnaissables en cours de description. Si les progrès de la génétique moléculaire ont permis d’identifier les bases moléculaires de certaines de ces entités, de nombreux cas restent encore inexpliqués. L’observation d’anomalies chromosomiques associées à une AS syndromique (duplication 4p16.3, délétion 22q13, duplication 15qter) suggère que certaines de ces pathologies pourraient être la conséquence d’anomalies chromosomiques cryptiques. La CGH array représente une avancée médicale majeure permettant l’exploration globale du génome avec une résolution 10 à 100 fois supérieure à celle des techniques de cytogénétique classique.

Nous avons ainsi étudié en puce ADN haute résolution (Agilent, 244k) 18 patients présentant une AS syndromique. Deux délétions non chevauchantes localisées en 19p13.13 et interrompant le même gène NFI-X (nuclear factor I/X) ont été détectées chez deux patients présentant une AS, une macrocéphalie et une arachnodactylie associée à un retard psychomoteur. Ces anomalies ont été confirmées par FISH et l’étude des parents a révélé qu’elles étaient survenues de novo.

Nous avons ensuite réaliser le séquençage de ce gène dans une cohorte de 77 patients présentant une AS syndromique, mais sans déséquilibre génomique ni mutations dans les gènes connus comme responsables d’anomalies de la croissance (NSD1, GPC3...). Une mutation stop hétérozygote a été mise en évidence dans NFI-X chez une patiente présentant le même phénotype que les deux patients délétés. Ce gène code un facteur de transcription appartenant à la famille des « nuclear factor », facteurs de transcription conservés au cours de l’évolution.

Les études d’expression de l’ARN au cours du développement humain par des techniques d’hybridation in situ montrent que le gène est exprimé dans le système nerveux central ainsi que dans le cartilage de croissance. Le séquençage du cDNA obtenu à partir du transcrit du gène NFIX présent dans les cellules buccales de la patiente ne révèle aucun pic hétérozygote. Ce résultat est un faveur d’un modèle d’haploinsuffisance du gène NFI-X par un système de « Nonsense-Mediated RNA Decay ».

En conclusion, nous avons identifié un nouveau gène dont l’haploinsuffisance (par délétion ou mutation) est la cause d’un nouveau syndrome de croissance excessive proche du syndrome de Sotos. Nos résultats montrent que la CGH array est un outil puissant pour un type d’approche « gène candidat ».
Discordances et difficultés d'interprétation des analyses génomiques globales dans le bilan étiologique du retard mental : à propos de 66 patients


(1) Service de Génétique et de Biologie de la Reproduction - Hôpital Maison Blanche - CHU de Reims
(2) Services de Pédiatrie – CHU et CH Région Champagne-Ardenne
(3) Service de Cytogénétique et Génétique moléculaire - Hôpital Brabois - CHU de Nancy
(4) Centre de Génétique humaine - Leuven - Belgique

L’absence de diagnostic étiologique dans plus de 50% des cas de retard mental a incité le développement des techniques de screening génomique. Les analyses des régions subtélomériques et les techniques de CGH-array de type génome global ont permis la caractérisation de déséquilibres chromosomiques cryptiques. Mais ces techniques testent des loci parfois différents et des discordances de résultats peuvent être observées, comme le montre cette étude.

Ce travail a été réalisé sur une série de 66 patients atteints de retard mental non expliqué (protocole national EGMAR, 7x66 patients). Les 66 patients ont été testés en FISH multitélomérique et en CGH-array avec des puces Agilent® 44K. Vingt-quatre patients ont également été testés en puce BAC/PAC de résolution 1 Mb (Leuven). Les résultats de CGH-array ont été confirmés en qPCR ou en FISH.

La FISH multitélomérique a détecté des déséquilibres chez 10,6% des patients. L’étude en CGH-array a montré que 41 % des patients étaient porteurs d’au moins un CNV (Copy Number Variant) non décrit comme polymorphique et que au moins 15% étaient porteurs d’une anomalie pathogénique. La distinction entre anomalies causales et CNVs bénins a été parfois délicate, en particulier pour les déséquilibres hérités ou concernant des régions pauvres en gènes. Ce travail a montré des discordances de résultats entre les différents examens réalisés. Ainsi, 4 résultats de CGH-array n’ont pas pu être confirmés par qPCR. Seules 3 des 10 anomalies subtélomériques détectées en FISH ont été vues par la puce Agilent 44K. Des discordances de résultats entre les deux types de puces ont été observées. Elles illustrent les problèmes de couverture des régions pauvres en gènes et des régions subtélomériques pour les puces Agilent 44K ainsi que les limites de résolution de la puce 1Mb. La puce BAC/PAC s’est révélée plus robuste pour l’analyse de 13 ADNs de qualité insuffisante pour la puce Agilent. Un cas de double discordance a pu être observé (une anomalie différente par type de puce), compliquant le conseil génétique. Enfin, cette étude a montré que la puce BAC / PAC aurait permis de diagnostiquer 9 des 10 anomalies considérées comme causales.

L’analyse des différents problèmes rencontrés a permis une réflexion, détaillée dans la présentation, sur l’efficacité et les limites des techniques utilisées et notamment de la CGH-array en fonction du type de puce utilisé. Ce questionnement a pour but d’optimiser la qualité des analyses et du conseil génétique proposés aux patients atteints de retard mental.
Duplication du gène MECP2 : à propos de 8 observations


(1) CHRU Hôpital Timone Enfants, Laboratoire de Cytogénétique Chromosomique, Marseille
(2) CHRU Hôpital Timone Enfants, Unité de Génétique Clinique, Marseille
(3) CHRU Hôpital Timone Enfants, Laboratoire de Génétique Moléculaire, Marseille

Nous rapportons les données cliniques et moléculaires de 8 patients (dont 2 frères) présentant une duplication du gène MECP2 (methyl-CpG-binding protein 2). En 2009, nous avons diagnostiqué 4 patients issus de 3 familles, adressés pour retard mental syndromique, sur les 371 demandes de CGH arrays (1%) (plateforme Agilent 180k). Sur une période de 3 ans, 4 autres patients sur une population de 70 retards mentaux liés à l’X ont été diagnostiqués par étude ciblée du gène MECP2 en qPCR (5.7%).

Le phénotype clinique associe une hypotonie infantile avec un retard des acquisitions motrices, une ataxie et une spasticité progressive affectant surtout les membres inférieurs, un langage quasiment absent, une épilepsie (50% des cas) dont l’âge d’apparition est variable, et une dysmorphie faciale discrète associant une brachycéphalie, une hypoplasie médiofaciale, une ensellure nasale marquée avec des narines antéversées, des oreilles de grande taille. L’histoire clinique de ces patients retrouve fréquemment la notion d’infections ORL et respiratoires récurrentes souvent à l’origine de leur décès. Des mouvements respiratoires anormaux, des apnées et des troubles du sommeil peuvent également être observés. Nous avons pu observer une variabilité importante de l’expressivité et ce au sein d’une même fratrie.

Ce tableau clinique reconnaissable est lié à la surexpression du gène MECP2, le plus souvent conséquence d’une duplication en tandem en Xq28. Dans notre série, la taille est comprise entre 160 kb et 600 kb. Dans la littérature, le plus petit remaniement est de 100kb (contient deux gènes MECP2 et IRAK1 (Interleukin-1 receptor-associated kinase 1) et le plus grand est de 2,6 Mb. La sévérité globale du phénotype chez le garçon ne semble pas être corrélée à la taille de la duplication. Mais, il semble que les patients avec une duplication de grande taille, incluant le gène FLNA (filamine A), manifestent une constipation et un dysfonctionnement vésical. Chez les patients dont la délétion ne contient pas ce gène, ces signes digestifs et urinaires sont possibles, conséquence de l’altération de l’expression du gène FLNA par la duplication.

Ce remaniement chromosomique peut survenir de novo ou être hérité de mère (pour 7 de nos patients, 1 non exploré) qui présentent un biais total d’inactivation du chromosome X. Dans de rares cas, cette duplication peut être la conséquence de la malségrégation d’un remaniement chromosomique X-autosome.

Une des conductrices présente un profil cognitif particulier : une anxiété anormale, un terrain dépressif, un comportement compulsif comme cela a été récemment rapporté dans la littérature.
Les nouveaux outils : La CGH array

Sanlaville D.

Hospices Civils de Lyon, Service de Cytogénétique Constitutionnelle, 59 Boulevard Pinel, 69677 Bron Cedex

Le titre de cette intervention aurait pu s’intituler : La CGH array : un nouvel outil déjà ancien ! En effet la première publication ayant montré la faisabilité d’une hybridation génomique comparative sur des séquences d’ADN déposés sur une lame de verre date de 1997 (Solinas-Toldo et al, 1997). L’intérêt de cette nouvelle technique d’exploration globale du génome a rapidement été montré aussi bien dans le domaine des pathologies acquises que des pathologies constitutionnelles et a supplanté la CGH sur chromosomes. Actuellement de très nombreuses publications ont montré, sur de grandes séries, le réel bénéfice de cette approche dans l’exploration globale du génome permettant de proposer son transfert en diagnostic aussi bien dans le domaine des pathologies constitutionnelles (retard mental et syndrome malformatifs) que dans le domaine de la pathologie acquise. Ce transfert, soutenu par la DGOS et l’INCA a pu débuter en France dès 2007. Dans le cadre de cette présentation, nous discuterons les différents choix technologiques possibles (BAC/PAC, oligos courts, oligos longs), leurs avantages et leurs limites. Nous aborderons également la place de cette « nouvelle technologie » dans le domaine du diagnostic et les changements que cela pourrait engendrer à plus ou moins court terme dans nos laboratoires. Nous aborderons également les difficultés inhérentes à une production « massive » tant en terme d’organisation que d’interprétation. A l’heure de l’accréditation, ces questions sont importantes et les recommandations préconisées dans la première version du guide des bonnes pratiques pour les analyses chromosomiques sur puce à ADN seront détaillées. Outre les problèmes éthiques qui peuvent être soulevés par cette analyse pangénomique à très haute résolution, nous nous arrêterons sur les problèmes diagnostic, en particulier dans le cadre du diagnostic prénatal et les difficultés de conseil génétique qui peuvent en découler. Les questions soulevées par l’implantation de la technique de CGH array en diagnostic devront être des pistes de réflexion qui permettront d’anticiper l’arrivée des données issues du séquençage haut débit et de leur place en diagnostic.
Séquençage haut débit : généralités et applications

Lévy N.

Résumé non communiqué
COMMUNICATIONS  POSTER
SECTION
CYTOGENETIQUE
CONSTITUTIONNELLE PRENATALE
Intérêt de la CGH-array dans la caractérisation d’un anneau surnuméraire découvert en situation anténatale


(1) CHU Toulouse Purpan - Service de Génétique Médicale / Gynécologie Obstétrique - Toulouse
(2) CHU Dijon - Laboratoire de Cytogénétique - Dijon

Les petits marqueurs surnuméraires sont des chromosomes anormaux de taille inférieure au chromosome 20, visualisés sur le caryotype mais difficiles à caractériser en cytogénétique conventionnelle. Ils représentent 0.075% des cas de diagnostic prénatal et parmi ceux-ci 10% sont des anneaux chromosomiques surnuméraires.

Nous rapportons, ici, l'intérêt de la CGH-array pour l'identification d'un anneau en mosaïque mis en évidence lors d'un diagnostic prénatal par amniocentèse à 23 SA, indiqué par la découverte d'une microcéphalie inférieure au 3ème percentile chez le fœtus.

Le caryotype a mis en évidence une mosaïque composée de 3 contingents cellulaires différents: normal, avec le petit anneau surnuméraire et avec la duplication de l'anneau.

Il a été montré qu'il s'agissait de matériel du chromosome 1 par l'utilisation de la technique d'hybridation in situ fluorescente avec le système octochrome CYTOCELL® puis la sonde centromérique du chromosome 1. Ainsi dans un premier temps la formule chromosomique rendue a été :

mos 47,XX,+ mar.ish add(1)(p or q)(wcp1+,D1Z1+)\[47\]/46,XX \[40\]/48,XX,+ 2 mar.ish (1)(p or q)(wcp1,D1Z1)x2\[13\]dn

ce qui a conduit le centre multidisciplinaire de diagnostic prénatal à accepter la demande d'interruption médicale de la grossesse faite par les parents. L'examen foetopathologique a été refusé par les parents et ne permet donc pas d'avoir plus d'information clinique.

Dans un deuxième temps, afin de mieux caractériser la nature de cet anneau, l'utilisation d'une puce à ADN (BlueGnome CytoChip V3.1) a été privilégiée à une utilisation massive de différentes sondes de FISH. À notre grande surprise, on a alors identifié un anneau formé de fragments non contigus du bras p du chromosome 1. D'une taille de 15 Mb il est composé du centromère, de la constriction secondaire 1qh, des bandes 1p12p13.2, 1p22.2p31.1 et 1p33p34.1 ce qui conduit à la formule :

mar.arr 1p34.1p33(45741579-47278308)x3,1p31.1p22.2 (22046781-29569723)x3,1p13.2p12 (114598503-120308401)x3

La seule corrélation phénotype-génotype possible est limitée à la microcéphalie et confirme que la bande 1p34.1 est bien une région d'intérêt. Une technique de CGH-array 44K permettra probablement d'affiner cette corrélation.

En conclusion, outre le fait que cette technique de CGH-array a évité d'utiliser à l'aveugle de nombreuses sondes FISH, elle a mis en évidence la complexité de formation d'un anneau et plaide pour son utilisation systématique lors de la découverte d'un marqueur de novo dans le but d'une caractérisation la plus fine possible.
Expérience genevoise du dépistage de la trisomie 21 au 1er trimestre de grossesse

Dahoun S. (1), Hediger Bonfantini J. (2), Bena F. (1), Kern I. (2)

(1) Service de génétique médicale, Hôpital cantonal Universitaire de Genève, Suisse
(2) Service de médecine de laboratoire, Hôpital cantonal Universitaire de Genève, Suisse

Le dépistage de la trisomie 21 (T21) au 1er trimestre de grossesse avec dosage sérique (PAPP-A et bêtaHCG libre) combiné à la mesure de la clarté nucale par échographie est pratiqué à Genève depuis 1999. Ces mesures biochimiques et échographiques pondérées pour les facteurs: âge maternel, poids, ethnie, tabagisme, antécédents obstétricaux, procréation médicalement assistée, permettent d’apprécier un risque d’aneuploïdie exprimé sous forme 1/x. Ce dépistage a été validé entre 11 0/7-13 6/7 semaines d’aménorrhée, la datation de la grossesse reposant sur la mesure ultrasonographique de la longueur crâno-caudale.

En 2009: 204 amniocentèses ont été pratiquées pour dépistage prénatal anormal au 1er trimestre vs 13 au second trimestre, respectivement 94% et 6%.

Nous avons analysé rétrospectivement les indications et résultats des caryotypes prénataux effectués au laboratoire entre 2007 et 2009 en nous focalisant sur les prélèvements motivés par un dépistage positif, défini comme un risque de trisomie 21 à terme supérieur à 1/380.

- 63/188 soit 33% des choriocentèses ont été réalisées suite à un dépistage combiné positif dont 75% avec un risque à terme > 1/50. Une aneuploïdie a été retrouvée dans 35/63 cas, soit 55% de ces choriocentèses.
- 515/2185 soit 26% des amniocentèses ont été réalisées suite à un dépistage combiné positif, avec un risque entre 1 et 1/435. Une aneuploïdie a été retrouvée dans 35/515 soit 6% de ces amniocentèses.

Nous avons également réalisé une analyse rétrospective des données et choix maternels pour les enfants trisomiques 21 nés entre 2002 et 2009, au total 30 cas.
- 3/30 femmes ayant choisi de n’avoir ni dépistage sanguin, ni test invasif.
- 4/30 aucun suivi avant le 3ème trimestre de grossesse.
- 5/30 refus d’examen prénatal invasif, malgré un dépistage positif.
- 2/30 décision de poursuivre la grossesse après amniocentèse révélant une T21.
- 11/30 dépistage du 1er trimestre pour la T21 faussement rassurant.
- 4/30 dépistage du 1er trimestre pour la T21 faussement rassurant.
- 1/30 données manquantes.

A Genève, le dépistage de la T21 au 1er trimestre a largement supplanté celui du 2ème trimestre, sans pour autant représenter l’indication principale à un examen prénatal invasif.

Le recours à l’amniocentèse reste largement majoritaire par rapport à la choriocentèse, sauf lors de risque élevé (>1/50), aboutissant à un taux d’aneuploïdie 9x plus élevé après choriocentèse qu’après amniocentèse.

La moitié des enfants nés avec T21 avaient eu un dépistage prénatal faussement rassurant.
Réévaluation de la recherche de microdélétion 22q11 chez les fœtus présentant une clarté nucale augmentée

Toutain J. (1), Horovitz J. (2), Saura R. (1)

(1) CHU de Bordeaux, Maternité Pellegrin, Laboratoire de cytogénétique.
(2) CHU de Bordeaux, Maternité Pellegrin, Service de Gynécologie-Obstétrique.

Objectif:
Deux publications récentes ont évalué l'intérêt de rechercher une microdélétion de la région 22q11 chez les fœtus présentant une clarté nucale augmentée (supérieure à 3,00 mm dans ces deux études) et chez lesquels le caryotype conventionnel était normal. Aucune de ces deux études n’a mis en évidence de microdélétion 22q11 chez les fœtus examinés. Notre travail visait à réévaluer l’intérêt de la recherche de microdélétion 22q11 chez les fœtus présentant une clarté nucale augmentée (supérieure à 3,50 mm dans notre étude).

Matériel et Méthode:
Lorsque le diagnostic prénatal était effectué pour augmentation de la clarté nucale au premier trimestre de la grossesse (clarté nucale supérieure à 3,50 mm), une biopsie de trophoblaste a été réalisée. Dans un premier temps, une recherche des principales aneuploïdies (chromosomes 13, 18, 21, X et Y) a été effectuée par FISH interphasique (kit Abbott Molecular AneuVysionTM) au niveau de l’axe mésenchymateux, après digestion enzymatique spécifique des villosités (collagénase / trypsine). Le caryotype conventionnel a ensuite été établi après culture des villosités choriales. En l’absence d’anomalie chromosomique, une recherche de microdélétion 22q11 a été réalisée par FISH interphasique (clones N25 et N85A3, CytocellTM).

Résultats:
145 patientes ont bénéficié d’un diagnostic prénatal par biopsie de trophoblaste pour clarté nucale augmentée (supérieure à 3,5 mm) au premier trimestre de la grossesse. 40 (27,6%) fœtus étaient atteints d’une des principales aneuploïdies. Les 105 (72,6 %) fœtus restants avaient un caryotype conventionnel strictement normal et une recherche de microdélétion 22q11 a ainsi été effectuée chez ces fœtus. Un des 105 fœtus (1/105 = 0,95%) présentait une microdélétion 22q11. Deux fœtus (2/105 = 1,90%) présentaient une microduplication 22q11 héritée d’un parent avec un phénotype apparemment normal.

Conclusion:
A la différence des études précédentes, notre travail a permis de mettre en évidence une microdélétion 22q11 chez un fœtus avec une clarté nucale augmentée. La différence méthodologique majeure entre ce travail et les études précédentes était le seuil de la mesure de la clarté nucale considéré (clarté nucale supérieure à 3,00 mm dans les études précédentes et supérieure à 3,50 mm dans notre étude). Nous poursuivons actuellement la recherche de microdélétion 22q11 chez les fœtus présentant une clarté nucale supérieure à 3,50 mm au premier trimestre de la grossesse et un caryotype conventionnel normal.
Un marqueur chromosomique surnuméraire peut en cacher un autre


(1) Service de Cytogénétique, CHU de Strasbourg, CHU de Dijon, Laboratoire Biomnis à Lyon
(2) Service de Gynécologie-Obstétrique, CMCO à Schiltigheim, CH de Colmar, CH de Lons-Le-Saunier
(3) Service de Pédiatrie et Service de Chirurgie Pédiatrique, CH de Colmar
(4) Service de Génétique, CH de Mulhouse, CHU de Besançon

La fréquence des marqueurs chromosomiques surnuméraires (MCS) est rare en diagnostic prénatal, de l’ordre de 0.075%, et, selon certains auteurs, elle augmenterait avec l’âge maternel. L’identification d’un MCS, qui nécessite en général la réalisation de multiples techniques, est primordiale car elle permet d’établir une corrélation génotype-phénotype et de donner un conseil génétique approprié.

Nous rapportons l’observation d’une patiente chez laquelle un caryotype fœtal sur liquide amniotique est réalisé en raison de signes d’appel biologiques et de l’âge maternel. Un MCS de grande taille de survenue de novo (les caryotypes des parents sont normaux) est trouvé sur 15 des 23 mitoses analysées et est identifié, grâce à des techniques complémentaires (NOR, FISH), comme un dérivé hétérochromatique des chromosomes 14 ou 22. La recherche d’une disomie uniparentale du chromosome 14 est négative.

La mise en évidence, à l’échographie du 2ème trimestre, d’un retard de croissance intra-utérin, d’une microcéphalie et d’une urétéro-hydronéphrose unilatérale chez le fœtus conduit à la réalisation, à 34 SA, d’un caryotype sur sang fœtal afin de vérifier le caractère isolé du MCS. Alors que ce dernier est retrouvé en mosaïque très faible (2/26 mitoses analysées), un deuxième MCS de très petite taille est également observé sur 22 des 26 mitoses analysées.

Malgré un pronostic réservé concernant l’enfant à naître, la grossesse est poursuivie. A la naissance, il existe une hypotrophie modérée (poids au 10ème percentile, taille à – 2,5 DS), une microcéphalie (- 3 DS), une petite CIA, une CIV musculaire, une malposition de la veine cave, une urétéro-hydronéphrose à droite, une imperformation anale haute, une fistule colo-vésicale et un hypospadias.

La CGH array (puce Agilent® 4*44K) réalisée après la naissance permet d’identifier le petit MCS comme un dérivé du chromosome 16 d’une taille de 16 Mb [arr16p11.2q12.1(31468951-47538203)x3] ; aucune autre variation du nombre de copies n’est détectée. L’hybridation in situ confirme que ce MCS est un dérivé du chromosome 16 ; elle précise également la répartition des différentes lignées cellulaires de la mosaïque chromosomique.

En conclusion :

Devant l’apparition de signes d’appel échographiques, l’existence d’un MCS hétérochromatique, a priori sans conséquence phénotypique, doit impérativement faire rechercher une autre anomalie chromosomique déséquilibrée, au besoin par CGH array.

Dans l’observation rapportée, le phénomène malformatif de l’enfant est très probablement lié au MCS dérivé du chromosome 16 étant donné la présence de nombreux gènes dans cette région dont certains sont impliqués dans la signalisation cellulaire.
La MLPA en prénatal : faisabilité et intérêts


Univ Clermont 1, UFR Médecine, Histologie Cytologie Embryologie Cytogénétique, Clermont-Ferrand, F-63001 ;
CHU Clermont-Ferrand, Cytogénétique Médicale, Clermont-Ferrand, F-63003

Introduction :
Les déséquilibres génomiques sont une cause importante de malformations congénitales. Les déséquilibres cryptiques, c'est-à-dire non détectés par le caryotype standard, peuvent maintenant être identifiés grâce au développement de techniques moléculaires comme la QMPSF, la MLPA et la CGH array. Dans le cadre du diagnostic chromosomique en prénatal, ces techniques sont cependant encore peu utilisées en routine. Dans ce travail, nous avons évalué la faisabilité et l'intérêt de la technique de MLPA dans la détection des déséquilibres génomiques cryptiques durant la période prénatale.

Matériels et méthodes :
Nous avons exploré par MLPA 61 fœtus porteurs de malformations à l'échographie dont le caryotype standard était normal. Les sondes de MLPA ciblaient les régions subtélomériques (SALSA P036 et P070, MRC Holland) ainsi que 21 régions chromosomiques impliquées dans des retards mentaux syndromiques (MRS-MLPA, SALSA P245, MRC Holland). Les déséquilibres mis en évidence ont été vérifiés par FISH (Vysis, Cytocell Technology).

Résultats :
Quatre déséquilibres chromosomiques ont été mis en évidence (6,5 %). Deux concernaient des réarrangements subtélomériques : une délétion 9pter isolée et une amplification 5pter associée à une délétion 18pter ; les deux autres étaient des délétions interstitielles : une délétion 15q11q13 et une délétion 22q11 à phénotype atypique. Ces anomalies ont été confirmées par FISH. Après conseil génétique, deux couples ont eu recours à une interruption de grossesse (à 19 et 36 semaines d'aménorrhée).

Conclusion :
L'exploration par MLPA de 61 fœtus porteurs de malformations et sans anomalie détectée au caryotype standard a permis de mettre en évidence un déséquilibre génomique chez 6,5% des fœtus. Notre étude montre pour la première fois la contribution de la MLPA subtélomérique associée à la MRS-MLPA dans la détection de déséquilibres génomiques cryptiques en prénatal. Moins onéreuse et plus facile à mettre en œuvre que la CGH array, la MLPA trouve toute sa place en prénatal, en deuxième intention après le caryotype standard, pour rechercher des déséquilibres génomiques cryptiques chez des fœtus malformés.
Les trisomies partielles pures du bras court du chromosome 6 sont des anomalies chromosomiques rares qui associent un retard de croissance pré- et post-natal, une dysmorphie faciale, des anomalies viscérales, des anomalies ophtalmologiques, et un retard psychomoteur variable.

Nous rapportons l’observation d’une fillette présentant une duplication pure de la région terminale du bras court du chromosome 6 de 6p24.3 à 6p25.3.

Chez une primigeste de 45 ans, un caryotype sur villosités chorales, réalisé en raison de l’âge est considéré comme normal 46,XX. La découverte, au deuxième trimestre de la grossesse, d’un retard de croissance intra-utérin sévère, conduit à la réalisation d’une césarienne en urgence à 35 SA.

A la naissance, il existe une hypotrophie sévère harmonieuse isolée.


Tous les cas de la littérature présentent un retard de croissance pré- et/ou post-natal ; chez la plupart d’entre eux, il existe des anomalies craniofaciales en particulier oculaires avec des fentes palpébrales étroites ou un blépharophimosis. Le retard psychomoteur est variable de même que les anomalies squelettiques, cardiaques, rénales et cérébrales. Ils semblent corrélés à la taille de la duplication, les phénotypes les plus sévères étant observés chez les patients porteurs de duplications de grande taille.

L’observation rapportée semble bien en accord avec cette constatation puisque le phénotype de l’enfant, qui est porteur d’une petite duplication, ne comporte qu’un retard staturopondéral isolé. Si son développement psychomoteur à 5 mois est satisfaisant, un suivi à plus long terme s'impose, non seulement pour surveiller sa croissance staturopondérale, mais également pour rechercher chez elle une éventuelle atteinte ophtalmologique ou cérébrale en raison, en particulier, de la présence dans cette région 6pter du gène FOXC1 impliqué dans les pathologies ophtalmologiques et du gène TUBB2B impliqué dans les micropolygyries.
Découverte fortuite d'une délétion (1)(q23.3q25) lors de l'exploration anténatale par CGH array d'une inversion péricentrique du chromosome 3


(1) CPDPN, Hôpital Robert Debré, Paris
(2) Service de Cytogénétique, Hôpital Antoine Béclère, Clamart

La découverte fortuite d'une inversion péricentrique non commune du chromosome 3 en anténatal chez un fœtus présentant un retard de croissance intra-utérin important, une cardiopathie de type cono-troncal et une agénésie rénale droite, pose la question d'un déséquilibre chromosomique. En effet, une étude récente (C.Schult-Bolard et al, 2009) a montré la présence d'un déséquilibre dans plus de 50% des inversions de novo. Ceux-ci peuvent se situer soit au niveau des points d’inversion soit sur un autre chromosome. Une amniocentèse a été pratiquée à 28 SA pour les signes d'appels échographiques cités précédemment. Celle-ci retrouve une formule chromosomique 46,XX,inv(3)(p12q26)dn.

Les résultats de la CGH array montrent un profil du chromosome 3 normal et met en évidence d’une façon surprenante, une délétion interstitielle du bras long du chromosome 1 d’environ 10 Mb. Cette délétion a été confirmée en FISH et est apparue de novo.

Les délétions interstitielles de la région 1q23q25 sont rares et apparaissent le plus souvent de novo. Peu de cas ont été décrits et seul un cas a été rapporté en prénatal (M. Chaabouni et al, 2006). La collection de plusieurs cas semblables permettrait de définir un nouveau syndrome.

Conclusion

Nous rapportons le cas d’une délétion interstitielle du bras long du chromosome 1 en 1q23q25 associée à une inversion péricentrique du chromosome 3 diagnostiquées en anténatal et apparues de novo.

L’intérêt de réaliser une CGH array en prénatal devant une anomalie chromosomique apparemment équilibrée associée à un phénotype anormal est discuté.
Difficulté d'interprétation des marqueurs chromosomiques en diagnostic prénatal

Schneider A. (1), Pinson L. (2), Blanchet P. (2), Puechberty J. (1,2), Tournaire M. (1), Chaze AM. (1), Girard M. (1), Geneviève D. (2), Sarda P. (2), Lefort G. (1)

(1) Hôpital Arnaud De Villeneuve - Département de Génétique Médicale, Unité Fonctionnelle de Génétique Chromosomique - CHRU Montpellier
(2) Hôpital Arnaud De Villeneuve - Département de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs - CHRU Montpellier

Les marqueurs chromosomiques sont définis comme des chromosomes de structure anormale ne pouvant être identifiés par les techniques de cytogénétique conventionnelle. La fréquence des marqueurs surnuméraires est de 0,076 % en prénatal et peut atteindre jusqu'à 0,426 % chez les patients présentant un retard mental. Le diagnostic cytogénétique et le conseil génétique soulèvent encore de réels problèmes particulièrement en diagnostic prénatal. En effet, le phénotype est difficile à préciser et varie en fonction de la composition génomique du marqueur (présence ou non d'euchromatine), de l'existence d'une mosaïque (pourcentage et localisation tissulaire) et du risque d'une disomie uniparentale des chromosomes homologues.

La stratégie d'identification des marqueurs chromosomiques a été facilitée depuis quelques années avec le développement des puces à ADN. Nous rapportons deux cas présentant chacun un marqueur surnuméraire du chromosome 1, ainsi que la stratégie d'identification utilisée, afin de permettre un conseil génétique adéquat.
Introduction :
Nous rapportons un cas de trisomie 21 partielle par recombinaison méiotique asymétrique, dans un contexte d’inversion péricentrique d’un chromosome 21 maternel.

Matériel et Méthode :
Mme L, 27 ans, G2P0 est adressée pour augmentation de l’épaisseur de la clarté nucale (CN=5.1 mm ; LCC=73.6mm – RV=85 selon Herman et al. L’examen du caryotype fœtal est réalisé sur prélèvement de villosités choriales.

Résultats :
La formule chromosomique fœtale est la suivante :
46,XX,rec(21)(qter->q21::p13->qter)mat. ish rec(21)(wcp21+,D21S259++,D21S341++,D21S342++)
Une demande d’interruption médicale de grossesse est formulée par le couple en raison du diagnostic de trisomie 21 partielle.
L’examen du caryotype maternel met en évidence une inversion péricentrique d’un chromosome 21, mal visible en RHG, mieux visible en GTG et confirmée en FISH :
46,XX,inv(21)(p13q21).

Conclusion :
Cette observation souligne :
- un mécanisme de recombinaison méiotique asymétrique à l’origine d’une trisomie 21 partielle fœtale.
- l’intérêt de l’analyse simultanée en technique RHG et GTG dans certaines anomalies de structure chromosomique.
- l’intérêt de l’analyse de l’histoire familiale qui permettait de relever des antécédents de retard mental et d’infertilité.
Diagnostic prénatal d’un locus d’instabilité chromosomique en 18p11.1

Tosca L. (1), Haddad V. (1), Brisset S. (1), Saada J. (2), Bardary A. (1), Mas AE. (1), Tachdjian G. (1)

(1) Service d’Histologie Embryologie Cytogénétique, Foetopathologie, AP-HP Hôpital Antoine Béclère, INSERM U935, Clamart 92140
(2) Service de Gynécologie Obstétrique, AP-HP Hôpital Antoine Béclère, Clamart 92140

Introduction :
La monosomie 18p est une anomalie chromosomique rare avec une naissance vivante sur 50 000 (de Grouchy et al. 1963). Deux tiers des cas résultent d’une délétion terminale de novo et un tiers des cas sont dus à des translocations de novo, des malsegréations d’une translocation parentale ou des inversions. Ce syndrome associe une dysmorphie modérée, un retard mental variable, des troubles du comportement et une holoprosencéphalie dans 10% des cas. Les points de cassure en 18p sont variables mais le locus 18p11.1 est le plus souvent décrit (Turleau, 2008).

Patient et Méthode :
La deuxième grossesse d’une patiente de 38 ans a été marquée par une hyperclarté nucale (3.5 mm) à 13SA+1J. L’histoire familiale était sans particularité avec la naissance d’un premier enfant bien portant. Une analyse chromosomique sur biopsie de trophoblaste a montré un remaniement complexe du chromosome 18. Un contrôle échographique à 17SA a mis en évidence une cardiopathie. Après conseil génétique, une interruption médicale de grossesse (IMG) a alors été réalisée. Des analyses cytogénétiques conventionnelles et moléculaires ont été réalisées sur villosités chorales et liquide amniotique. L’autopsie du fœtus a montré un fœtus de sexe féminin avec une dysmorphie (pli inter-orbitaire, petit nez pointu, palais plat, rétrognatisme et oreilles basses), une malrotation digestive, un canal atrio-ventriculaire et une hypoplasie globale du cervelet sans anomalie architecturale.

Résultats :

Conclusion :
Les techniques associant cytogénétique conventionnelle et moléculaire ont montré trois formules chromosomiques de novo différentes sur les trois types de prélèvements de ce fœtus. Le point de cassure au niveau de la région chromosomique 18p11.1 est observé dans les 3 remaniements chromosomiques. L’implication du locus 18p11.1 dans l’instabilité chromosomique de ces remaniements est discutée.
**Étude moléculaire d’un remaniement complexe en prénatal : apport de la CGH array**

Marey I. (1), Dupont C. (1,2), Pipiras E. (2), Bucourt M. (3), Bellais E. (2), Kaltenbach S. (1), Aboura A. (1), Tabet AC. (1), Benzacken B. (1,2), Delahaye A. (2)

(1) Unité fonctionnelle de Cytogénétique, Hôpital Robert Debré, Paris, France
(2) Service d’Histologie-Embryologie et Cytogénétique, Biologie de la reproduction, Hôpital Jean Verdier, Bondy, France
(3) Service de Foetopathologie, Hôpital Jean Verdier, Bondy, France

**Introduction :**
L’amélioration du dépistage prénatal et le développement de nouvelles techniques cytogénétiques et moléculaires permettent de diagnostiquer et de mieux explorer les syndromes polymalformatifs en anténatal. Nous rapportons le cas d’un fœtus polymalformé avec notamment une holoprosencéphalie et porteur d’un remaniement chromosomique complexe (CCR) survenu de novo.

**Matériel et Méthode, Résultats :**
Il s’agit de la première grossesse d’un couple consanguin pour laquelle l’échographie du troisième trimestre retrouve une malformation cérébrale complexe (syntélencéphalie, agénésie du corps calleux et anomalies de gyration), confirmée par une IRM foetale. Le caryotype réalisé après l’IMG montre une translocation réciproque (5q;6q) et un remaniement complexe (13q;14q;18q) apparemment équilibré confirmé par la FISH. Le caryotype des parents est normal. Aucune mutation n’a été retrouvée sur les gènes impliqués dans l’holoprosencéphalie.

Une CGH array de type oligo (Agilent®, 105k) réalisée chez ce foetus mets en évidence plusieurs microdélétions cryptiques déséquilibrées en 14q11.2q12 (5.7 Mb), en 14q31.3 (2.1 Mb) et en 11q22.3 (634 kb).

**Discussion, Conclusion :**
Cette observation montre l’intérêt de l’utilisation des nouvelles techniques de cytogénétique moléculaire dans la caractérisation précise des CCR apparemment équilibrés, rares en prénatal et souvent de mauvais pronostic.

Par ailleurs, les différentes possibilités de mécanismes de survenue de tels remaniements chromosomiques complexes seront rediscutées.
A propos de deux cas d'ambiguïtés sexuelles découvertes par échographie en prénatal


(1) Services de Génétique Médicale et de gynécologie-Hôpital Gustave Flaubert - Le Havre.
(2) Service de biochimie endocrinienne et moléculaire- Hospices civils de Lyon.
(3) Laboratoire de génétique - Hopital Jeanne de Flandre CHRU de Lille.
(4) Service de Chirurgie pédiatrique - CHRU Charles Nicolle Rouen.

Nous reportons deux cas d'ambiguïtés sexuelles découvertes par des échographies effectuées au cours de la grossesse. Deux hypothèses sont alors posées : soit pénis et scrotum bifide sans testicule visible, soit grandes lèvres et hypertrophie clitoridienne.
Dans les deux cas des ponctions de liquide amniotique ont été proposées.

- Dans le premier cas, il s’agit d’une patiente de 16 ans et demi, GIP0, présentant un bilan de premier trimestre normal : CN 1.22 mm, LCC 60.21 mm, MSM 1/3860. Lors de l’échographie du deuxième trimestre, un sexe fœtal masculin est suspecté.
L’analyse cytogénétique a mis en évidence une translocation réciproque apparemment équilibrée entre les bras courts des chromosomes 1 et 16 aussi qu’une mosaïque gonosomique dont l’étude par FISH a permis de dénombrer : 38% de cellules 46,XY et 63 % 45, X.
Les investigations complémentaires suivantes : caryotypes parentaux, peintures chromosomiques des chromosomes 1 et 16 ainsi que l’analyse par CGH array, ont confirmé d’une part que la translocation réciproque était équilibrée et non héritée des parents et d’autre part que la mosaïque était représentée par plus de 80 % de cellules en monosomie X.
Le dosage des hormones stéroïdes du liquide amniotique est en faveur d’un taux de testostérone normal bas pour un fœtus masculin à fonction testiculaire normale, les autres stéroïdes dosés sont normaux. Une prise en charge chirurgicale est prévue à la naissance avec mise en attente de la déclaration à l’état civil.

- Dans le second cas il s’agit d’une première grossesse chez une patiente de 19 ans d’évolution normale (CN 1.46 mm, LCC 63.9, MSM 1/4000) dont l’échographie effectuée à 26 SA ne permet pas de préciser le sexe foetal.
Le caryotype fœtal obtenu par l’analyse du liquide amniotique est normal avec une formule féminine 46,XX.
Le dosage des stéroïdes dans le surnageant du liquide amniotique élimine un déficit en 11 hydroxylase, mais n’élimine pas à 100 % un déficit en 21 hydroxylase (21 désoxy cortisol normal bas).
La testostérone en en faveur d’un fœtus de sexe féminin.
Dans l’attente de l’issue de la grossesse la patiente a reçu un suivi clinique avec recherche de signes de virilisation, un suivi échographique avec inspection des ovaires, évolution de l’aspect des organes génitaux externes du fœtus et un suivi biologique hormonal.
BACs on Beads : une nouvelle méthode pour le diagnostic rapide en prénatal

Vialard F. (1), Aboura A. (2), Molina Gomes D. (1), Serero S. (3), Clement P. (4), Bouhanna Ph. (1), Selva J. (1), Benzacken B. (2)

(1) Département de Cytogénétique, Obstétrique et Gynécologie, CHI Poissy St Germain
(2) Laboratoire de Cytogénétique, Hôpital Robert Debré, GHU Nord, APHP, Paris, France
(3) Centre de Biologie et de Cytogénétique, 19, rue Saint-Pierre, 27000 Evreux, France
(4) Laboratoire Clément, 8 av Henri Barbusse, Le Blanc Mesnil, France

Introduction:
L’augmentation constante des demandes de diagnostic cytogénétique au 1er trimestre sont à l’origine (1) d’un surcout de travail au niveau des laboratoires de cytogénétique par la réalisation de 2 caryotypes pour chaque ponction de villosités chorales (PVC), et (2) de la recherche, après les échographies du 2ème et 3ème trimestre de plus en plus performantes, de syndromes microdélétionnels, suite à l’identification de signes évocateurs, plusieurs semaines après la réalisation d’un caryotype classique. C’est dans ce contexte que nous avons évalué la technologie BACs on Beads (BoB) (Perkin Elmer) pour éventuellement remplacer l’analyse directe des PVC. Il permet de dépister les trisomies 13, 18 et 21 et également les syndromes microdélétionnels les plus fréquents en même temps.

Matériels et méthode:
La technologie BoB est une technique de cytogénétique moléculaire en phase liquide, qui utilise des billes de polystyrènes (100 différentes), couplées à des séquences spécifiques d’ADN.
Afin d’évaluer la technologie nous avons (1) étudié des anomalies cytogénétiques connues, (2) analysée de façon rétrospective des ponctions de liquide amniotique et de villosités chorales. Une fois cette évaluation faite, nous avons réalisé (3) une étude comparative de cette technologie par rapport aux techniques conventionnelles, qui permet le diagnostic des trisomies 13, 18 et 21 ainsi que celui des 9 syndromes microdélétionnels les plus fréquents.

Résultats:
Nous avons confirmé l’habilité de la technologie BoB pour identifier les anomalies précédemment définies dans le cadre du diagnostic prénatal sur ponction de liquide amniotique ou de villosités choriales, à l’exception des triploïdies. Nous avons également confirmé, de façon prospective, la possibilité de réaliser un diagnostic en 24 heures sur plus de 40 échantillons différents en même temps.

Conclusion:
Nos résultats ont confirmé que la technologie BACs on Beads est une alternative à la FISH interphasique (aneuvysion) mais également à la technique MLPA dans le cadre de la recherche de syndrome microdélétionnels.

Perspectives :
Nous allons maintenant tester le kit « all aneuploidies » et espérons obtenir des résultats aussi concluant que pour le précédent kit, afin de ne plus avoir à réaliser d’examen direct sur PVC. Parallèlement, nous allons progressivement arrêter la FISH interphasique et ne réaliser que cette technologie BoB. Enfin, les évolutions de cette nouvelle technologie pourraient être (1) une augmentation du nombre de billes analysables, (2) l’étude de l’ensemble des télomères, (3) une utilisation dans le cadre de la caractérisation de tumeurs.
Syndrome de Beckwith-Wiedemann et QT long congénital lié à une translocation familiale impliquant la région 11p15.5


(1) Département de Génétique, Hôpital Robert Debré, Paris
(2) UF de Cardiogénétique, GHU Pitié-Salpêtrière, Paris
(3) Laboratoire d’explorations fonctionnelles endocriniennes, Hôpital Armand Trousseau, Paris
(4) Service de Génétique et Embryologie Médicales, Hôpital Armand Trousseau, Paris

Introduction

Le syndrome de Beckwith-Wiedemann (BWS) est un syndrome de croissance excessive associant une macrosomie, une macroglossie, une viscéromégalie et des anomalies de fermeture de paroi abdominale. Les hypoglycémies néonatales et le risque de développement de tumeurs embryonnaires conditionnent le pronostic de ce syndrome. Son incidence est estimée à 1 sur 13 700 naissances vivantes. Le BWS se caractérise par une grande variabilité moléculaire : anomalies géniques, épigénétiques ou chromosomiques aboutissant à une dérégulation de l’expression des gènes de la région chromosomique 11p15 soumise à empreinte parentale (1).

Nous rapportons le cas d’un fœtus porteur d’un BWS de découverte échographique et lié à la présence d’une translocation réciproque apparemment équilibrée t(11;17)(p15.5;q21.3) héritée et d’origine maternelle.

Cas clinique :

Une jeune femme d’origine roumaine, G1P1, bénéficie d’une ponction de liquide amniotique en raison de la découverte échographique (22SA) d’une omphalocèle associée à une macrosomie fœtale. Le caryotype fœtal a mis en évidence une translocation apparemment équilibrée impliquant la région 11p15.5 : 46,XX,t(11;17)(p15.5;q21.3). L’enquête familiale a montré l’origine maternelle de cette translocation, le grand père maternel, ainsi que la tante maternelle, est également porteur de la translocation. Tous les trois ont par ailleurs un phénotype normal. Après conseil génétique, l’enfant est né prématuré au terme de 34SA. Une cure d’omphalocèle a été réalisée en période néonatale ainsi qu’une surveillance des épisodes d’hypoglycémie. Par ailleurs, des troubles du rythme cardiaque nous ont fait découvrir un QT long congénital chez cet enfant ; ce symptôme est également présent chez la mère et sa sœur. Une mutation du gène KCNQ1(KVLQT1) peut être responsable du QT long congénital (2), or ce gène situé en 11p15.5 est dérégulé dans le BWS (3). Le séquençage de ce gène ainsi que l’étude précise des points de cassures de la translocation est en cours au laboratoire.

Conclusion

Cette famille représente un cas typique de transmission familiale de BWS dû à une anomalie chromosomique avec présence d’un phénotype lorsque la transmission est d’origine maternelle. Par ailleurs, nous rapportons pour la première fois, un syndrome du QT long congénital associé au BWS.

La fréquence des marqueurs chromosomiques surnuméraires (sSMC) en période prénatale est estimée à 0,075 %. Les sSMC sont difficiles à identifier en cytogénétique conventionnelle en raison de leur petite taille et de leur perte après culture. Les sSMC constituent un groupe hétérogène d’anomalies chromosomiques de structure variable, pouvant être associés ou non à des anomalies du phénomène. La présence d’un marqueur sSMC de novo soulève une question difficile pour le conseil génétique en période prénatale, en raison du risque de retard mental et/ou de malformations pour le fœtus. Grâce au développement des techniques de cytogénétique moléculaire, il est devenu possible de déterminer l’origine et la composition d’un sSMC.

Le but de notre étude était d’analyser par CGH-array une série de marqueurs surnuméraires en mosaïque et de novo afin de les identifier et/ou de les caractériser pour proposer un conseil génétique adapté. Des puces à ADN 4*44k Agilent ont été utilisées pour l’analyse de 7 sSMC dont 5 sSMC avaient été identifiés par FISH (sSMC des chromosomes 10, 11, 18, 20 et 22).

L’analyse par CGH-array a mis en évidence de l’euchromatine pour quatre d’entre eux (taille variant de 1.3 à 12.2 Mb) et un profil normal pour le cinquième. Pour les 2 sSMC non révélés par FISH l’analyse par CGH-array a mis en évidence de l’euchromatine (sSMC du chromosome 10 avec une duplication 10p11.22 de 4.8Mb et sSMC du chromosome 18 avec une duplication de 15Mb).

Cette analyse a permis un conseil génétique adapté, une interruption médicale de grossesse a été réalisée pour 4 des 6 marqueurs composés d’euchromatine. L’examen fœtopathologique réalisé à l’issu de ces IMG a mis en évidence un syndrome polymalformatif pour deux fœtus sSMC(20) et sSMC(22), un examen normal pour un (sSMC(11)) et a été refusé pour l’isochromosome 18. Pour les 2 grossesses poursuivies, une malformation rénale a été détectée à la naissance dans 1 cas, une tétralogie de Fallot a été mise en évidence à 34SA dans l’autre cas.

Cette étude nous a permis de montrer que les sSMC en mosaïque peuvent être désormais identifiés et caractérisés par la technique de CGH-array. Cette technique permet de déterminer rapidement la taille et l’origine du marqueur chromosomique surnuméraire. Celle-ci permet de détecter la présence ou non d’euchromatine afin d’améliorer les corrélations génotypes- phénotypes et d’affiner le conseil génétique. En conclusion, la CGH-array est particulièrement indiquée en diagnostic prénatal afin de faciliter l’évaluation des risques en temps opportun.
Diagnostic prénatal d'une tétrasomie 13q31.1-qter due à un chromosome marqueur néocentromérique


(1) Service d’Histologie Embryologie Cytogénétique, Inserm U935, Hôpital Antoine Béclère, Clamart
(2) Service de Cytogénétique, Hôpital Robert Debré, Paris
(3) Service d’Anatomie Pathologique, , Hôpital Antoine Béclère, Clamart
(4) Service de Gynécologie Obstétrique, , Hôpital Antoine Béclère, Clamart

Introduction

Les chromosomes marqueurs surnuméraires (CMS) sont détectés dans environ 1,5/1000 cas en diagnostic prénatal et dans 0,24/1000 nouveaux nés. Les CMS ne contenant pas de séquences alpha satellites sont rares. Ces CMS comportent un néocentromère qui correspondent à des centromères fonctionnels formés à partir de régions chromosomiques non centromériques. La formation d’un néocentromère permet donc d’assurer la stabilité mitotique des fragments chromosomiques ne comportant pas de séquences alpha satellites.

Cas clinique

Nous rapportons le cas d’une femme enceinte de 22 ans, primigeste. Une amniocentèse a été réalisée à 16 SA pour une échographie fœtale anormale à 12SA avec présence d’un hygroma et une hypoplasie du cervelet chez le fœtus. L’étude cytogénétique a montré une formule chromosomique 47,XY,+mar dn. Une étude par hybridation in situ fluorescente avec des sondes spécifiques du chromosome 13 et des sondes pancentromériques a montré que le CMS correspondait à une inversion-duplication de la région distale du chromosome 13q avec la présence d’un néocentromère. L’étude par CGH array avec une puce BAC (Perkin Elmer) a montré un gain de la région 13q31.1-qter.

Après conseil génétique, une interruption médicale de grossesse a été réalisée selon la loi française. L’étude foetopathologique a montré un fœtus de sexe masculin avec une dysmorphie, un hygroma cervical kystique, une hexadactylie de la main droite et du pied gauche, un défaut d’accolement du tube digestif, une dysplasie rénale et un micropénis avec probable hypospade. Le CMS a été observé dans tous les différents tissus analysés (villosités choriales, poumons, muscle).

Conclusion

Nous rapportons le cas d’un chromosome marqueur surnuméraire néocentromérique 13q conduisant à une tétrasomie 13q31.1-qter, diagnostiqué en anténatal et apparu de novo. Quatre cas de CMS néocentromériques avec un point de cassure en 13q31 ont été décrits dans la littérature. Il s’agit du deuxième cas décrit en diagnostic prénatal.
Diagnostic prénatal précoce d’une trisomie 22 homogène. Description échographique et à la naissance

Muti C. (1), Markou G. (2), Bidat L. (2,3), Van Tilbeurgh F. (1), Lavaud N. (1), Simon-Bouy B. (1)

(1) Laboratoire SESEP Centre hospitalier de Versailles 78150 Le Chesnay
(2) CPDPN Léonard de Vinci Pontoise-Colombes-Argenteuil
(3) Centre d'échographie Saint Germain en Laye

Introduction :
La trisomie 22 homogène est une anomalie chromosomique rare qui aboutit dans la grande majorité des cas à un avortement spontané précoce. Le cas décrit ici présente un diagnostic prénatal très précoce et l’évolution échographique d’un foetus atteint jusqu’à la fin de la grossesse.

Matériel et méthode:
Madame V, d’origine africaine, est âgée de 34 ans, 2ème geste (une fille bien portante), elle est adressée pour un diagnostic prénatal en raison d’un hygroma mis en évidence à 9SA (semaines d’aménorrhée), puis d’une nuque mesurée à 2,9mm à 12SA pour une longueur cranio-caudale à 52mm et l’absence des os propres du nez. Une biopsie de villosités choriales est réalisée à 12SA et montre sur l’examen direct et sur la culture une trisomie 22 homogène. Ce résultat est confirmé par hybridation in situ fluorescente (sonde Tuple1, Vysis). Les caryotypes sanguins des parents ne retrouvent pas d’anomalie. Malgré les informations péjoratives fournies dès le résultat de l’examen direct, le couple n’a pas souhaité interrompre la grossesse souhaitant un accompagnement à la naissance. Une amniocentèse a été réalisée qui a confirmé l’anomalie homogène.

Résultats et discussion:
Le suivi échographique est fait très régulièrement. Il est retrouvé à 17 SA un retard de croissance intra utérin inférieur au 3ème percentile, une dysmorphie faciale associant un faciès plat, une absence des os propres du nez, un hypertélorisme et un œdème préfrontal, une malformation cardiaque de type téralogie de Fallot et une dilatation du 3ème ventricule. Les mains et les pieds ont un aspect normal. A 19 SA, en plus des malformations déjà décrites, un rein en fer à cheval est mis en évidence. A 23 SA, le corps calleux est noté court et épais, le myocarde apparaît épais et très échogène, la malformation cardiaque de type téralogie de Fallot est confirmée avec une très petite voie pulmonaire. A 28 SA, apparaissent des dilatations digestives. La surveillance ultérieure de la grossesse confirmera la présence de toutes les malformations décrites, le retard de croissance intra-utérin restera toujours majeur.

Madame V accouche d’un enfant décédé pendant le travail, au terme de 41 SA + 5 jours. les parents n’ont pas souhaité d’autopsie. La dysmorphie faciale sera présentée à l’aide des photographies.

Conclusion :
Cette observation rare d’une trisomie 22 homogène arrivée à terme et suivie soigneusement tout au long de la grossesse permet une description très précise des malformations observées ainsi que de leur cinétique d’apparition.
Le diagnostic prénatal des anomalies chromosomiques : l’expérience du CHU- Farhat Hached de Sousse à propos de 10944 cas

Mougou S., Dimassi S., Sennana H., Elghezal H., Saad Q.

Service de Cytogénétique et Biologie de la Reproduction, CHU Farhat Hached, Sousse-Tunisie

Les anomalies chromosomiques représentent un poids important parmi les conceptions anormales. Elles peuvent être responsables de tableaux bruyants mettant en cause le pronostic vital de l’enfant, soit d’anomalies plus subtiles pouvant retentir sur le développement psychomoteur de l’enfant ce qui constitue une raison fort valable pour le diagnostic prénatal et un pilier majeur de la politique de prévention de l’handicap d’origine génétique.

Dans ce travail, nous rapportons les résultats du diagnostic prénatal des anomalies chromosomiques établis dans le Service de Cytogénétique et Biologie de la Reproduction du CHU Farhat Hached de Sousse en Tunisie de janvier 1992 à Décembre 2009 à propos de 10944 cas.

Le caryotype fœtal a été réalisé pour âge maternel avancé dans 60% des cas ce qui constitue l’indication la plus fréquente. Une anomalie chromosomique a été détectée dans 4,5% des cas. La mesure de la clarté nucale a indiqué la pratique d’un caryotype prénatal dans 6% des cas avec 7,5% d’anomalies chromosomiques détectées. Les malformations fœtales avec des signes d’appel échographiques ont motivé la réalisation de 21% des caryotypes fœtaux. La fréquence des anomalies chromosomiques associées à cette indication était de 11,5%. Les d’aberrations chromosomiques étant plus fréquemment associées aux anomalies du cœur et de l’appareil digestif avec des taux respectifs de 19% et 18 %.

Aujourd’hui, en Tunisie, il n’existe pas un consensus clair de diagnostic et dépistage prénatal et l’indication d’une interruption médicale de la grossesse pose des problèmes éthiques et personnels dans les pays arabo-musulmans en particulier. Une meilleure stratégie de diagnostic prénatal avec un politique adaptée est à discuter.
De la ségrégation des translocations : à propos d’une translocation réciproque (4;15)(q32;q26) suivie sur six générations

Segala J., Damette A., Collonge-Rame MA., Bresson JL.

Service de Génétique, Histologie, Biologie du Développement et de la Reproduction, CHU Hopital St-Jacques, Place St-Jacques, 25030 Besançon

Une translocation réciproque t(4;15)(q32;q26) est découverte chez une patiente à la suite d’un diagnostic chromosomique prénatal réalisé pour signe d’appel échographique au cours de la surveillance d’une grossesse obtenue par fécondation in vitro d’indication essentiellement masculine et ayant repéré un caryotype foetal de type add15(q26)

Quatre ans, quatre grossesses et quatre interruptions médicales de grossesse plus tard, le bilan familial ayant permis de construire un arbre généalogique sur 6 générations, découvre que cette translocation qui n’avait apparemment jamais fait parler d’elle dans les 6 générations de cette branche familiale jusqu’à notre patiente, est connue dans une autre famille apparentée chez laquelle elle s’est manifestée également chez un seul couple dont les 3 premiers nés des 4 enfants étaient handicapés du fait de ses déséquilibres.

Ce type d’observation qui prend en défaut le modèle de conseil génétique et de présentation de risque que l’on peut délivrer à partir des modèles théoriques de ségrégation ou des informations des bases de données, interroge sur les éventuels facteurs qui, au delà de la simple probabilité statistique, seraient susceptibles pour une même translocation et dans une même famille de moduler le niveau de risque pour une grossesse déterminée.
Diagnostic prénatal d'une translocation réciproque héritée de la mère et d'une mosaïque de novo d'un anneau du chromosome X paternel: grossesse menée à terme


(1) Laboratoire de Cytogénétique, CHU d'Amiens, Université de Picardie Jules Verne, Amiens
(2) Génétique Clinique, Hôpital Nord, CHU d’Amiens
(3) Centre Gynéco Obstétrical et Centre Pluridisciplinaire de Diagnostic Prénatal CHU d'Amiens
(4) Centre d'activité de cardiologie, Pôle Pédiatrie, Hôpital Nord, CHU d’Amiens
(5) Laboratoire de Biochimie Hormonale et Génétique, Hôpital Bichat Claude Bernard, Paris
(6) Laboratoire de Génétique Médicale, Hôpital Jeanne de Flandre, CHRU de Lille

Introduction:
Les anomalies congénitales majeures provenant de remaniements hérités et de novo sont respectivement 2-3% et 6-7%. Les anneaux d’un chromosome X en mosaïque possédant le centre d’inactivation Xist, sont la cause de petite taille, avec développement sexuel et fertilité maintenus pour certains; les anomalies cardiovasculaires sont rares. La taille de la délétion dans r(X), la fréquence de la distribution des clones 45,X et 46,X,r(X) dans différents tissus et la présence ou absence de Xist sont responsables de la variation phénotypique. En l’absence du Xist sur r(X), un retard mental est toujours présent.

Observation:
Une femme de 36 ans, primigeste, non à risque pour la mesure échographique de la nuque à T1, ni pour les marqueurs sériques à T2, est adressée au Centre Pluridisciplinaire de Diagnostic Prénatal pour signes d’appel à l’échographie de 22SA: le diamètre bipariétal, la circonférence céphalique et le fémur sont < 3ème percentile. A l’échographie de 23SA+4j, les BIP et PC passent aux 5ème-10ème percentile avec dopplers normaux. Un bilan infectieux et une ponction de liquide amniotique sont effectués.

Matériel et Méthode:
Le caryotype fœtal en technique conventionnelle révèle une translocation réciproque apparemment équilibrée t(1;21)mat, vérifiée par les peintures chromosomiques, ainsi qu’une mosaïque à 45/46 chromosomes avec anneau d’un chromosome X de novo. Les techniques FISH CEPX/CEPY Vysis et Xist en Xq13.2/CEPX Kreatech identifient la présence du centre de l’inactivation de l’X sur l’anneau.
Une étude moléculaire de l’inactivation de l’X montre un biais complet d’inactivation de l’X (en l’occurrence l’anneau de l’X d’origine paternelle, hyperméthylé). Une CGH-array ne montre pas de déséquilibre en dehors de l’anneau de r(X) qui est de 55Mb en Xp et de 77Mb en Xq.

Résultats:
La formule du caryotype s’écrit:
mos 45,X,t(1;21)[p32;q22]mat[8]/46,X,r(X)[p11.1;q21.1]dn,t(1;21)mat[12]
ish (DXZ1x1,DYZ3x0)[6/22]
nuc ish (DXZ1x1,DYZ3x0)[24/100],r(X)[DXZ1,XIST]x1[14/200]

Évolution:
Après explications, la mère a souhaité poursuivre la grossesse. A 28 SA, les PC et BIP se normalisent au 25-30ème percentile, (seul le fémur reste au 5ème percentile), à l’échographie morphologique. Les échographies cardiaques à 28 puis 31SA+4j ne montrent pas d’anomalie morphologique, cinétique ou rythmologique. Seule une hypertrophie septale modérée est notée, sans aspect de myocardiopathie ou obstruction, justifiant un contrôle échocardiographique postnatal.

Conclusion:
Pour notre patiente, en l’absence de délétion en dehors de celle de r(X) Xist positif, un syndrome de Turner reste l’éventualité la plus probable, sans anomalie cardiaque ou malformation(s) d’organe(s) décelées.
Intérêt de la CGH-array dans la caractérisation d'un anneau surnuméraire découvert en situation anténatale


(1) CHU Toulouse Purpan - Service de Génétique Médicale / Gynécologie Obstétrique - Toulouse
(2) CHU Dijon - Laboratoire de Cytogénétique - Dijon

Les petits marqueurs surnuméraires sont des chromosomes anormaux de taille inférieure au chromosome 20, visualisés sur le caryotype mais difficiles à caractériser en cytogénétique conventionnelle. Ils représentent 0.075% des cas de diagnostic prénatal et parmi ceux-ci 10% sont des anneaux chromosomiques surnuméraires.

Nous rapportons, ici, l'intérêt de la CGH-array pour l'identification d'un anneau en mosaïque mis en évidence lors d'un diagnostic prénatal par amniocentèse à 23 SA, indiqué par la découverte d'une microcéphalie inférieure au 3ème percentile chez le fœtus.

Le caryotype a mis en évidence une mosaïque composée de 3 contingents cellulaires différents : normal, avec le petit anneau surnuméraire et avec la duplication de l'anneau.

Il a été montré qu'il s'agissait de matériel du chromosome 1 par l'utilisation de la technique d'hybridation in situ fluorescente avec le système octochrome CYTOCELL\textsuperscript{®} puis la sonde centromérique du chromosome 1. Ainsi dans un premier temps la formule chromosomique rendue a été :

mos 47,XX,+ mar.ish add(1)(p or q)(wcp1+,D1Z1+)[47]/46,XX [40]/48,XX,+ 2 mar.ish (1)(p or q) (wcp1,D1Z1)x2[13]dn

cel qui a conduit le centre multidisciplinaire de diagnostic prénatal à accepter la demande d’interruption médicale de la grossesse faite par les parents. L’examen foetopathologique a été refusé par les parents et ne permet donc pas d’avoir plus d’information clinique.

Dans un deuxième temps, afin de mieux caractériser la nature de cet anneau, l'utilisation d’une puce à ADN (BlueGnome CytoChip V3.1) a été privilégiée à une utilisation massive de différentes sondes de FISH. A notre grande surprise, on a alors identifié un anneau formé de fragments non contigus du bras p du chromosome 1. D’une taille de 15 Mb il est composé du centromère, de la constriction secondaire 1qh, des bandes 1p12p13.2, 1p22.2p31.1 et 1p33p34.1 ce qui conduit à la formule :

mar.arr 1p34.1p33(45741579-47278308)x3,1p31.1p22.2 (22046781-29569723)x3,1p13.2p12 (114598503-120308401)x3

La seule corrélation phénotype-génotype possible est limitée à la microcéphalie et confirme que la bande 1p34.1 est bien une région d'intérêt. Une technique de CGH-array 44K permettra probablement d' affiner cette corrélation.

En conclusion, outre le fait que cette technique de CGH-array a évité d’utiliser à l’aveugle de nombreuses sondes FISH, elle a mis en évidence la complexité de formation d’un anneau et plaide pour son utilisation systématique lors de la découverte d’un marqueur de novo dans le but d’une caractérisation la plus fine possible.
SECTION

CYTOGENETIQUE

CONSTITUTIONNELLE POSTNATALE
Marqueur chromosomique surnuméraire : A propos d'un cas


(1) Laboratoire de Biochimie, CPMC, Alger
(2) Service de Neurologie, Hôpital Ben Aknoun, Alger

Les marqueurs chromosomiques surnuméraires (MCS) constituent un groupe hétérogène d’anomalies chromosomiques de structure variable, pouvant être associées ou non à des anomalies du phénotype. Des corrélations phénotype-génotype, utiles pour le conseil génétique, peuvent se retrouver dans les MCS. Différents outils moléculaires peuvent être utilisés pour déterminer l’origine et la composition d’un MCS. Le choix de la technique d’analyse d’un MCS (FISH, MFISH, SKY, la CGH et la CGH array) est fonction de plusieurs critères, dont la taille du MCS obtenue par technique de cytogénétique conventionnelle, les données cliniques, biologiques et d’imagerie.

Dans notre cas, nous avons utilisé la FISH chez une enfant âgée de 14 mois, qui présente un MCS sur caryotype standard et sur le plan phénotypique les caractéristiques suivantes : microcéphalie, visage rond, fentes palpébrales mongoloïdes, narines antéversées, cou court, saillie de l’anthélix, petite bouche, doigts longs et pli palmaire.
Le syndrome Mesomelia-synostoses est lié à la délétion de deux gènes SULF1 et SLC05A1 en 8q13


(1) CHU Nantes, Service de Génétique Médicale, Nantes, F44093, France
(2) INSERM, UMR915, l'institut du thorax, Nantes, F44007, France

Le syndrome mesomelia-synostoses (MSS) ou dysplasie mésomélique avec synostoses acrales de type Verloes-David-Pfeiffer est une pathologie autosomique dominante caractérisée par un raccourcissement du segment mésomélique des membres, des synostoses acrales et des malformations congénitales (cardiaques et rénales). A ce jour, cinq patients de quatre familles indépendantes ont été rapportées à travers le monde.

Par CGH array, nous avons identifié une délétion interstitielle en 8q13 chez tous les patients rapportés. La taille des délétions varie de 582 Kb à 738 Kb mais emporte invariablement deux gènes : SULF1, codant l’heparane sulfate 6-O-endosulfatase 1 et SLC05A1, codant l’unité 5A1 de la famille des transporteurs d’anions organiques. SULF1 est un régulateur de nombreux facteurs de croissance impliqués dans le développement embryonnaire squelettique tandis que la fonction précise de SLC05A1 est inconnue. Le séquençage des points de cassure réalisé dans deux familles indique des délétions non récurrentes. La RT-PCR en temps réel a montré une très forte expression des transcrits de SULF1 dans les ostéoblastes et le cartilage humains tandis que SLC05A1 est très fortement exprimé dans le cœur et le rein foetal et adulte.

Nos résultats suggèrent très fortement que l’haploinsuffisance de SULF1 contribue à la chondrodysplasie mésomélique. Etant donné que les délétions emportent systématiquement SULF1 et SLC05A1 et que les réarrangements sont non récurrents, ne résultant pas d’un mécanisme de recombinaison homologue non allélique, nous suggérons que l’haploinsuffisance de SULF1 associée à l’haploinsuffisance de SLC05A1 (ou à l’altération de l’expression d’un gène voisin par effet de position pourrait être nécessaire à l’apparition du syndrome mesomelia-synostoses.
Tetrasomie 15q11.2 (2,9 Mb) due à un chromosome marqueur surnuméraire associé à une infertilité masculine

Guediche N. (1,2), Tosca L. (1,2), Kara Terki A. (1), Bas C. (1), Briand-Suleau A. (2), LeLorc’h M. (1), Brisset S. (1,2), Aboura A. (1), Goossens M. (2), Tachdjian G. (1,2)

(1) Services de Cytogénétique (Antoine Béclère, Necker, Robert Debré), APHP, Inserm U935, Clamart 92140
(2) Plateforme de Génomique IMRB 955, Hôpital Henri Mondor, Créteil 94010

Introduction :
La fréquence de survenue des chromosomes marqueurs surnuméraires (CMS) est de 0,14-0,72/1000 nouveau-nés. Ils peuvent être associés à des phénotypes normaux ou anormaux. Une incidence plus élevée des CMS a été observée chez des hommes infertiles présentant des anomalies de la spermatogenèse. Nous présentons la caractérisation par hybridation génomique comparative sur puce (array CGH) d’un CMS associé à une infertilité masculine.

Matériel et Méthode:
Une étude cytogénétique a été réalisée chez un homme (patient 1) âgé de 39 ans adressé pour un bilan d’infertilité primaire et présentant une oligoasthénotératozoospermie sévère. Les techniques de cytogénétique conventionnelle et d’Hybridation In Situ fluorescente (FISH) (sondes : WCP15, CEP15, Nors, 15qter, SNRPN) ont été pratiquées. L’enquête familiale a révélé la même anomalie chromosomique chez le frère du sujet (patient 2) âgé de 47 ans et qui ne présentait pas d’infertilité. Une hybridation génomique comparative sur puce (array CGH, Agilent 105K) a ensuite été réalisée pour les 2 patients. Les points de cassure des marqueurs ont été confirmés par FISH (sondes BACs : RP11-173D3, RP11-107O19).

Une analyse par FISH de 1000 noyaux spermatiques par patient utilisant une sonde centromérique du chromosome 15 a été réalisée afin de déterminer la ségrégation méiotique de l’anomalie chromosomique au cours de la méiose.

Résultats:
Les techniques de cytogénétique conventionnelle et moléculaire ont mis en évidence chez les deux patients un CMS dérivé du chromosome 15, homogène, dicentrique et bisatellisé. L’array CGH a révélé un gain d’ADN au niveau de la région 15q11.2 de 2,93 Mb pour le patient 1 et de 2,88Mb pour le patient 2. Ce gain d’ADN correspondait à la présence d’une duplication de la région 15q11.2 sur le CMS.

Les résultats de la FISH sur les noyaux spermatiques sont présentés dans le tableau 1.

Tableau 1 : Résultats de la FISH sur noyaux spermatiques

<table>
<thead>
<tr>
<th>Type de noyaux</th>
<th>Patient 1</th>
<th>Patient 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noyaux monosomiques</td>
<td>53%</td>
<td>59%</td>
</tr>
<tr>
<td>Noyaux disomiques (avec CMS - sans CMS)</td>
<td>2,9% - 3,3%</td>
<td>2,6% - 5,4%</td>
</tr>
<tr>
<td>Noyaux nullisomiques (avec CMS - sans CMS)</td>
<td>11,4% - 3,1%</td>
<td>8,9% - 1,9%</td>
</tr>
<tr>
<td>Total des noyaux avec CMS</td>
<td>39%</td>
<td>32%</td>
</tr>
</tbody>
</table>

Conclusion:
A notre connaissance, il s’agit de la première caractérisation par array CGH d’un CMS associé à une infertilité. Ce CMS dérive d’une duplication de la région 15q11.2 qui comporte 19 gènes. La variabilité phénotypique associée à cette tétrasomie 15q11.2 dans cette fratrie est discutée.
Marqueurs chromosomiques surnuméraires: quelle place pour la CGH-array en diagnostic?


(1) Hospices Civils de Lyon, Service de Cytogénétique Constitutionnelle, CBPE, Bron
(2) Hospices Civils de Lyon, Laboratoire d’Hématologie, CHLS, Pierre-Bénite
(3) Service de Pédiatrie, Centre Hospitalier de Villefranche
(4) Centre Hospitalier de Valence, Laboratoire de Cytogénétique, Valence
(5) Hospices Civils de Lyon, Service de Génétique, HFME, Bron
(6) Hospices Civils de Lyon, Service de Biostatistiques, CHLS, Pierre-Bénite
(7) UCBL1, EA 4171, Lyon

La découverte d’un marqueur chromatique surnuméraire (MCS) sur le caryotype constitue souvent un véritable défi, tant pour son identification que pour le conseil génétique, surtout lorsqu’il est non satellisé. En effet, ces petits fragments chromosomiques additionnels sont sept fois plus fréquents chez les patients atteints de retard mental et dans 20 % des cas les techniques de FISH classiques ne parviennent pas à les identifier. La CGH-array s’est révélée être une technique particulièrement efficace pour caractériser les MCS, y compris les MCS analphoïdes, multiples ou en mosaïque faible. Cependant, une seule grande série rapportant l’identification de 20 MCS a été publiée à ce jour (Ballif et al., 2007).

Nous avons étudié 10 MCS diagnostiquées chez des patients atteints de retard mental syndromique à la fois par une puce 180K commerciale (Agilent) et par une puce 244K personnalisée, densifiée au niveau des régions péricentromériques. Chaque anomalie caractérisée a été vérifiée par FISH sur métaphase.

Huit des 10 MCS ont été identifiés par CGH-array (80%) aussi bien par la puce 180K que par la puce 244K personnalisée. Ces marqueurs impliquent les chromosomes 1 (2 cas), 5, 8, 9 (2 cas), 19 et 22. Leur taille moyenne est de 21, 96 Mb (13,96 Mb - 45,15 Mb). Le taux de mosaïcisme estimé à partir des valeurs des log2ratio est de 18% à 83%. Par ailleurs, une délétion homogène du chromosome 9 del(9)(q13q21.13) a été mise en évidence chez un patient. Les deux MCS non caractérisés par CGH-array ont été étudiés par M-FISH. L’un est un marqueur néocentrique dérivé du chromosome 7, l’autre, présent en très faible mosaïque, n’a pas été identifié.

Caractérisation en cgh-array de 10 patients présentant un phénotype atypique de syndrome de Williams et Beuren.


(1) Service de Cytogénétique Constitutionnelle, CHU de Lyon, Lyon
(2) Département de Génétique, AP-HM, Marseille
(3) Service de Génétique, CHRU de Lille, Lille
(4) Service de Pédiatrie, Hôpital Jean Verdier, Paris
(5) Service de Génétique, CHU de Saint-Etienne, Saint-Etienne
(6) Service de Néphrologie pédiatrie, CHU de Lyon, Lyon
(7) Service de Génétique, CHU de Rouen, Rouen,
(8) Service de Génétique, CHU de Poitiers, Poitiers
(9) UCBL1, EA 4171, Lyon

Le syndrome de Williams et Beuren (SWB) est caractérisé par un retard des acquisitions psychomotrices, une dysmorphie faciale, un comportement hypersociable et des anomalies cardiovasculaires. Ce syndrome est secondaire à une microdélétion 7q11.23 d’environ 1,8 Mb.

Des délétions plus larges ont été associées à la présence de signes cliniques atypiques, incluant une épilepsie, une atteinte cognitive et/ou des anomalies physiques inhabituelles. De même, des délétions plus petites ont permis d’impliquer les gènes GTF2I et GTF2IRD1 dans le profil neurocognitif particulier du SWB.

Dans cette étude, nous avons caractérisé en CGH-array 10 patients présentant un phénotype évocateur d’un SWB atypique. Nous avons utilisé une puce Agilent enrichie en sondes au niveau de la région 7q11.23 (28 147 oligonucléotides) permettant d’obtenir un niveau de résolution moyen de 440 pb au niveau de la région du SWB et de 40 kb dans le reste du génome. Le premier objectif de l’étude était la recherche de délétion 7q11.23 de taille atypique. Le second objectif était d’analyser et de dépister l’éventuelle présence d’autres déséquilibres chromosomiques pouvant contribuer au tableau clinique atypique.

Deux types de patients ont été inclus : 1) Patients avec des caractéristiques cliniques évocatrices de SWB, sans délétion retrouvée en 7q11.23 en FISH (3 patients) ; 2) Patients présentant une délétion 7q11.23 confirmée en FISH, associée à un phénotype clinique atypique (7 patients). Le caractère atypique du phénotype a été évalué par les cliniciens sur la présence de signes morphologiques ou malformatifs inhabituels, sur l’absence de signes morphologiques typiques malgré la présence de la délétion ou sur un niveau de retard des acquisitions inhabituel.

L’analyse en CGH array a été réalisée chez les dix patients inclus. Dans le groupe 1, il a été détecté, chez le même patient, deux déséquilibres chromosomiques, localisés en dehors de la région critique du SWB : une délétion 7q32.2 héritée de la mère et une délétion 11q21.1 de 3,12 Mb de novo. Pour le groupe 2, toutes les microdélétions correspondent à la délétion « classique ». Chez deux patients, d’autres CNVs pouvant contribuer au phénotype ont été mis en évidence : une microduplication 15q13.2q13.3 héritée comprenant le gène CHRNA7 et une microduplication 9p24.1 interrompant le gène JMJD2C, exprimé au niveau cérébral.

Nous discuterons le phénotype du patient porteur de la délétion 11q21.1 et l’hypothèse selon laquelle le phénotype des syndromes microdélétionnels pourrait être « potentialisé » par la présence d’autres CNVs.
Caractérisation d'une microduplication 22q11 héritée atypique

Pebrel-Richard C. (1), Gouas L. (1,2), Eymard-Pierre E. (1), Goumy C. (1,2), Véronèse L. (1,2), Prié N. (1), Tchirkov A. (1,2), Vago P. (1,2)

(1) CHU Estaing - Cytogénétique Médicale - Clermont-Ferrand
(2) Univ Clermont 1 - Fac Médecine - Histologie Cytologie Embryologie Cytogénétique - Clermont-Ferrand

La région 22q11 compte 8 répétitions segmentaires (LCR A à H) à l’origine de réarrangements génomiques récurrents (microdélétions, microduplications, inversions) par recombinaison homologue non-allélique (NAHR). Aux côtés de la délétion 22q11 responsable du syndrome de DiGeorge (DGS), d’autres types de recombinaisons peuvent survenir et générer des réarrangements différents tels que le Cat Eye Syndrome (CES), le dérivé 22 issu d’une translocation t(11;22) ou la microduplication 22q11.2.

A l’heure actuelle, seule une cinquantaine de cas de microduplications dans la région 22q11 a été décrite. Contrairement aux microdélétions réciproques majoritairement de novo (90%), ces microduplications sont fréquemment héritées d’un parent à phénotype normal ou subnormal. Leur caractérisation moléculaire rapporte principalement des duplications du segment de 3 Mb (compris entre les blocs A et D), correspondant à la « Typically Deleted Region » (TDR), mais aussi des duplications du segment de 1,5 Mb (compris entre les blocs A et B), correspondant à la « DiGeorge Critical Region (DGCR), ou encore des duplications de taille plus importante (4 ou 6 Mb) s’étendant au-delà de la TDR.

Nous rapportons le cas d’un enfant de 2 ans ½ présentant un retard psychomoteur, des troubles du langage et une dysmorphie faciale modérée. Le caryotype ne révèle aucune anomalie. Le bilan est complété par une exploration par MLPA des régions subtélomériques et de 21 régions chromosomiques impliquées dans des retards mentaux syndromiques (SALSA P036/P070 et P245, MRC Holland). Cette dernière révèle une duplication en 22q11 impliquant au minimum le gène SNAP29 mais n’incluant pas les gènes CLDN5, GP1BB. Ces résultats sont confirmés après quantification du nombre de copies des gènes GP1BB, SNAP29 et PPIL2, par QM-PSF. L’enquête familiale nous permet d’affirmer le caractère hérité de ce remaniement, puisque la mère de l’enfant, présentant une dyslexie et une voix nasonnée, est porteuse de la même duplication. Une CGH-array, en cours de réalisation, permettra de borner plus précisément la région dupliquée, résultant probablement d’une NAHR atypique entre les blocs B et D ou C et D.

Ces microduplications de petite taille intervenant dans la région distale de la TDR, au-delà de la DGCR, ont rarement été décrites dans la littérature et semblent engendrer un phénotype modéré et très variable. La région dupliquée ne parait pas inclure le gène TBX1 pourtant proposé comme gène candidat majeur dans la région 22q11.2. Aussi l’identification de ce type de remaniements atypiques devrait pouvoir améliorer la corrélation génotype-phénotype et permettre de cibler de nouveaux gènes candidats.
Délétion 20p proximale de novo chez une patiente présentant un panhypopituitarisme, un syndrome autistique et une scoliose


(1) Service de Génétique, Hôpital de l’Archet II, CHU Nice
(2) Service de Pédiatrie, Hôpital de l’Archet II, CHU Nice


Nous décrivons ici le cas d’une patiente porteuse d’une délétion 20p11.2, survenue de novo, mise en évidence par la technique de CGH-Array. La patiente est très dysmorphique, et présente un syndrome autistique, un retard mental, un panhypopituitarisme, une hypoglycémie sévère, et une scoliose. La délétion dont elle est porteuse, est plus proximale que celle décrite par Michaelis, et chevauche une partie de la délétion décrite par Garcia-Heras, mais est beaucoup plus petite que cette dernière. La délétion, d’environ 3.7 à 5.2 Mb, couvre une vingtaine de gènes. Parmi eux, les gènes INSM1, FOXA2, CST3, et PAX1, dont nous discuterons l’implication possible dans le phénotype de la patiente. A notre connaissance, il s’agit ici de la première description d’une délétion 20p11.2 proximale et survenue de novo.

Microduplication 15q13.3 impliquant le gène CHRNA7 chez deux patientes atteintes de retard mental et de troubles du comportement


(1) Service de Génétique, Hôpital de l’Archet II, CHU Nice
(2) Service de Pédiatrie, Hôpital de l’Archet II, CHU Nice


Nous décrivons ici deux patientes présentant un retard mental et une dysmorphie, et porteuses d’une duplication de 0.16 Mb de la région 15q13.3, identifiée par CGH-Array et confirmée par les techniques de FISH et de qPCR. Dans les deux cas, cette microduplication n’affecte que le gène CHRNA7, codant pour le récepteur nicotinique de l’acétylcholine. À notre connaissance, il s’agit de la plus petite duplication 15q13.3 rapportée. De plus, cette duplication du gène CHRNA7 est héritée du père dans le cas de l’une des deux patientes. Le père porteur de la duplication de CHRNA7 présente lui-même un tableau de démence. De manière intéressante, CHRNA7 est un gène candidat pour les troubles épileptiques, mais aussi pour un phénotype plus large de troubles neuropsychiatriques et neurologiques.
Une rare forme familiale de microdéletion 22

Toutain J. (1), Morice-Picard F. (2), Taine L. (1), Saura R. (1)

(1) CHU de Bordeaux, Maternité Pellegrin, Laboratoire de cytogénétique
(2) CHU de Bordeaux, Laboratoire de génétique moléculaire

Objectif:
Nous présentons dans ce travail un cas de transmission maternelle atypique d’une microdéletion 22q11.2 par une patiente porteuse d’un remaniement chromosomique apparenté équilibré impliquant cette région.

Matériel et Méthode:
Une jeune femme sans anomalie phénoménique et enceinte de 14 semaines d’aménorrhée se présente à notre consultation de génétique en raison d’un antécédent familial de microdéletion 22q11.2. La mère de notre patiente a eu avec un premier conjoint un enfant décédé à l’âge de 7 mois en raison d’une cardiopathie (cardiopathie non étiquetée, prise en charge médicale en dehors de notre centre hospitalier). Avec un deuxième conjoint, la mère de cette jeune femme a eu une grossesse interrompue en raison d’une cardiopathie sévère associée à une microdéletion 22q11.2 mise en évidence par FISH sur noyaux interphasiques lors de l’examen foeto-pathologique réalisé à l’époque (prise en charge médicale en dehors de notre centre hospitalier). Une étude par cytogénétique conventionnelle (caryotype en « bandes R ») et moléculaire (FISH sur chromosomes métaphasiques) a été effectuée chez la patiente et chez sa mère.

Résultats:
Chez la mère de notre patiente, un chromosome 22 avec une intensité de fluorescence au niveau centromérique diminuée et présentant une délétion des loci 22q11.1 et 22q11.2 et un chromosome marqueur avec une morphologie en anneau porteur d’un centromère d’origine 22 et des loci 22q11.1 et 22q11.2 ont été identifiés. Chez la patiente, aucune anomalie n’a été observée après les examens de cytogénétique conventionnelle et moléculaire, aucun diagnostic prénatal n’a donc été proposé à cette patiente.

Conclusion:
Le cas clinique décrit dans ce travail était, à notre connaissance, le premier cas de transmission maternelle d’une microdéletion 22q11.2 par une femme phénoméntiquement normale et présentant un chromosome 22 porteur d’une microdéletion des loci 22q11.1 et 22q11.2 et un chromosome surnuméraire avec une morphologie en anneau porteur des loci 22q11.1 et 22q11.2. Des études par hybridation génomique comparative sont en cours chez la mère de notre patiente afin de compléter cette étude et proposer un éventuel mécanisme de survenue permettant d’expliquer ce remaniement exceptionnel. Ce cas clinique soulignait par ailleurs l’intérêt des études cytogénétiques sur chromosomes métaphasiques afin d’identifier et caractériser certains marqueurs chromosomiques et ainsi préciser le mode de transmission rarissime de certains syndromes microdéletionnels.
Diagnostic en CGH array d'une délétion 7q21 familiale responsable d'une surdité et de malformations des extrémités de transmission dominante d'expression variable

Till M. (1,2), Cordier MP. (2), Labalme A. (1), Bouvier R. (3), Roth P. (4), Gaucherand P. (4), Edery P. (1,2), Sanlaville D. (1,2)

(1) Centre de Biologie et Pathologie Est - labo de cytogénétique - LYON BRON
(2) Hopital Femme Mere Enfant - unité de génétique clinique - LYON BRON
(3) Centre de Biologie et Pathologie Est - Anatomopathologie - LYON BRON
(4) Hopital Femme Mere Enfant - service de gynécologie- obstétrique - LYON BRON

Madame B, née en 1987, a été adressée au centre pluridisciplinaire de diagnostic prénatal pour le diagnostic au 2ème trimestre de la grossesse d’un syndrome malformatif des 2 membres inférieurs et d’un retard de croissance global chez son foetus.

Le caryotype foetal réalisé à 24SA a montré une trisomie X (47,XXX). La suite de la grossesse sera marquée par une MFIU et l’autopsie confirmera les anomalies majeures des membres inférieurs bilatérales et asymétriques et mettra en évidence un rein droit pelvien hypoplasique et la présence d’une dysmorphie faciale.

Lors de la consultation de génétique, il est noté que la maman présente une surdité profonde bilatérale avec mutité non prise en charge ni inventoriée jusqu'alors (originaire de Mayotte), des troubles du comportement, une petite taille, des particularités morphologiques faciales et des anomalies mineures des membres.

L’hypothèse d’une pathologie dominante à expressivité variable est évoquée et une CGH Array réalisée chez la maman à la recherche d’un microremaniement chromosomique.

Cet examen a montré une délétion de 6,1Mb en 7q21.2q21.3 confirmée en FISH avec une sonde de la région sur les métaphases du caryotype maternel (46,XXish del(7)(q21.2q21.3)(RP11-101N3-), arr 7q21.2q21.3(91,089,819-97,221,383)x1).

La CGH Array réalisée chez le foetus à partir de l’ADN conservé montre la même délétion.

Une nouvelle grossesse suivie en échographie sans anomalie de membre a abouti à la naissance en 12/2009 d’un petit garçon qui présente une dysmorphie superposable à celle de sa maman sans anomalie des extrémités. Il présente par ailleurs une surdité profonde bilatérale de perception en cours d’investigation. Le caryotype est 46,XY mais l’étude en FISH retrouve la délétion 7q21 d’origine maternelle.

Nous comparerons cette observation familiale avec les données de la littérature concernant les observations rapportées de délétion dans la région 7q21 et discuterons l’implication des gènes compris dans cette délétion avec la surdité et les anomalies de développement des membres.
Cartographie moléculaire de délétions terminales 15q pures chez quatre patients avec un phénotype anormal


(1) Laboratoire d’Histologie, d’Embryologie et de Cytogénétique, INSERM U613, Faculté de Médecine et des Sciences de la Santé, UBO et Service de Cytogénétique, Cytologie et Biologie de la Reproduction, CHRU Brest.
(2) Groupe Hospitalier Pellegrin, Bordeaux, Hôpital Saint-Vincent de Paul, Lille et CHU Jean Verdier, Bondy.

Les délétions distales du bras long du chromosome 15 sont très rarement décrites dans la littérature. Les buts de notre étude sont d’une part, de réaliser une cartographie moléculaire de délétions de novo terminales 15q chez quatre patients avec un phénotype anormal et d’autre part, d’établir une corrélation génotype-phénotype.

 Parmi les signes les plus fréquemment rencontrés chez les quatre patients, il est à noter un retard de croissance intra-utérin puis post-natal portant essentiellement sur la taille et le périmètre crânien, un retard des acquisitions psychomotrices, une cardiopathie, une dysmorphie faciale (visage triangulaire, épicanthus, micrognathie, bouche large et lèvre supérieure fine), des anomalies des extrémités (doigts courts, effilés).

 Pour chaque patient, un caryotype est établi. Pour les patients 2 et 3, une recherche de remaniements des régions subtélomériques est effectuée (ToTelVysion Multi-color FISH probe panel, Abbott, Rungis, France). Pour la patiente 4, dont le phénotype évoque un syndrome d’Angelman, une FISH avec la sonde LSI SNRPN/LSI 15qter (CytoCell, Compiègne, France) est effectuée.

 Afin de cartographier l’étendue de la délétion 15q, une FISH avec des BACs (Bacterial Artificial Chromosomes) localisés entre 15q26.1 et 15q26.3 est réalisée.

 Le caryotype de la patiente 1 est 46,XX,del(15)(q26). Pour les 3 autres patients, le caryotype est normal mais la FISH met en évidence une microdélétion terminale 15q.

 L’étendue de la délétion est respectivement de 9,48 Mb, 5,54 Mb, 5,46 Mb et 4,19 Mb pour les patients 1, 2, 3 et 4.

 Nous rapportons dans ce travail quatre patients porteurs d’une délétion terminale 15q pure dont la taille et le phénotype associé varient. L’étude de cytogénétique moléculaire a montré que chez tous les patients, le gène IGF1R, codant pour un récepteur à activité tyrosine kinase liant IGF-1, IGF-2 et l’insuline est délété. Ceci explique le retard de croissance prénatal et postnatal selon un effet de « dosage de gène » maintenant connu. Ce gène semble aussi impliqué dans divers aspects du développement du système nerveux central chez l’homme et pourrait donc être lié aux problèmes de retard mental. D’autre part, le gène NR2F2 supposé impliqué dans l’angiogenèse et dans le développement du cœur est délété uniquement chez le patient 1, ce qui pourrait expliquer son décès à l’âge de deux mois suite à une coarctation de l’aorte avec hypertension artérielle pulmonaire systémique.

 L’étude d’un plus grand nombre de patients devrait permettre d’identifier de nouveaux gènes candidats ainsi qu’une nouvelle entité syndromique.
Déséquilibre d'une inversion péricentrique maternelle inv(10)(p11.2q21.2) caractérisée comme "variant" ou "polymorphisme" : première observation rapportée

Guichet A., Colin E., Paubel A., Barth M., Ingster O., Bonneau D.

Service de Génétique, 4 rue Larrey, CHU, 49933 Angers

Les inversions péricentriques sont des remaniements chromosomiques fréquents. On distingue les inversions péricentriques qui concernent l'hétérochromatine comme l'inv(1), inv(9), inv(16), inv(Y) et qui sont considérées comme bénignes. Et d'autre part les inversions péricentriques qui concernent l'euchromatine comme l'inv(2)(p11q13), inv(3)(p11q12) ou inv(3)(p13q12), inv(5)(p13q13) et inv(10)(p11.2q21.2) qui sont 5 inversions péricentriques récurrentes sans conséquence phénotypique (Gardner et Sutherland 1996).

Nous rapportons l'observation d'une inversion péricentrique d'un chromosome 10 chez une patiente découverte lors d'une première grossesse où le fœtus polymalformé avait un caryotype déséquilibré avec un dérivé de l'inversion maternelle entraînant une délétion 10pter partielle associée à une duplication 10qter partielle. Cette inversion sera retrouvée dans la famille.

Dans la littérature seule l'inversion péricentrique d'un chromosome 10 dont le point proximal est 10p11 et dont le point de cassure distale est en 10q25 ou 10q26 est connue pour déséquilibré par aneusomie de recombinaison. En revanche l'inversion avec le point proximal et avec le point distal en 10q21.2 est considérée comme un variant et sans conséquence phénotypique. Deux études ont confirmé l'absence de gènes aux points de cassure et un haplotype commun parmi les 24 familles européennes étudiées en faveur d'un effet fondateur par un ancêtre commun.

A l'heure où nous discutons à l'élaboration d'un guide des « bonnes pratiques » dont celle à adopter devant les inversions péricentriques, cette observation amène à ne pas considérer les inversions péricentriques d'euchromatine comme des variants et de proposer un diagnostic prénatal aux patients porteurs de ces remaniements.
Disomie fonctionnelle Xq28 avec duplication de MECP2 chez une fille

Le Meur N. (1,2), Goldenberg A. (1), Chambon P. (1), Huin V. (1),
Dufauferrier-Di Fiore N. (2), Rossi A. (2), Plessis G. (3), Guyant-Maréchal L. (1),
Guillot M. (4), Frébourg T. (1), Saugier-Veber P. (1)

(1) Fédération de Génétique de Haute-Normandie, France
(2) Laboratoire de Cytogénétique, EFS-Normandie, Bois Guillaume, France
(3) Laboratoire de Cytogénétique, CHU de Caen, France
(4) Lisieux, France

Introduction :
La généralisation des techniques de CGH-Array chez des patients atteints de retards mentaux a fait émerger de nouveaux syndromes associés à des CNVs (Copy Number Variants). Si ces technologies de criblage tout génome sont extrêmement puissantes pour la détection et la cartographie des remaniements cryptiques, leur utilisation se heurte à des difficultés d’interprétation qui résultent de l’existence de CNVs dont le caractère polymorphique ou pathogène est difficile à établir.

Matériel et Méthode:
Nous rapportons l’observation d’une jeune fille de 12 ans présentant un retard mental sévère avec absence de langage, dysmorphie, microcéphalie, grande hypotonie et syndrome cérébelleux statique. L’I.R.M. montre une agénésie vermienne, un corps calleux fin et une dilatation ventriculaire.

Une recherche de microremaniements a été réalisée par CGH Array à l’aide d’une puce 105K (Agilent). Les remaniements détectés ont été confirmés par QMPSF ou FISH.

Résultats:
La CGH-Array a mis en évidence une délétion 17pter de très petite taille et une duplication Xqter de taille importante. Elle a par ailleurs révélé un remaniement apparentemment complexe en 17p13 qui correspondait en partie à un artefact. La duplication Xq28 implique le gène MECP2. La FISH a montré que la trisomie Xq28 résultait d’une translocation déséquilibrée (X;17).

Conclusion:
La taille de la région Xq28 dupliquée et sa localisation sur un autosome peuvent expliquer à elles seules le phénotype de la patiente puisqu’il existe une disomie fonctionnelle de MECP2. Il s’agit du 5ème cas de disomie fonctionnelle de MECP2 liée à une translocation déséquilibrée (X;autosome) chez une fille. Le phénotype observé est parfaitement concordant avec les autres cas décrits et correspond à un tableau Rett-like : grande hypotonie néonatale, convulsions, retard mental sévère, microcéphalie, dysmorphie faciale, infections pulmonaires récurrentes et constipation sévère. Cette présentation clinique est comparable à celle observée chez le garçon porteur d’une duplication en Xq28. Cette présentation sévère due à la disomie fonctionnelle de MECP2 contraste avec le caractère quasi-asymptomatique des duplications en Xq28 en tandem chez les filles en raison du biais de l’inactivation de l’X engendré par la duplication.

Outre son intérêt clinique, cette observation illustre les difficultés d'interprétation des images de CGH Array et la nécessité absolue de vérification des remaniements détectés par CGH-Array, la mise en évidence de la translocation par FISH ayant radicalement changé l’interprétation de la duplication en Xq28.
Les monosomies 1q terminales : Analyse moléculaire par CGH-array et recherche de corrélation génotype / phénotype


(1) Service de Génétique, CHU de Tours
(2) Laboratoire de Génétique Moléculaire, CHU de Rennes
(3) Service de Génétique Médicale, CHU de Nantes
(4) Northern Genetics Service, Institute of Human Genetics, Newcastle upon Tyne,
(5) Department of Clinical and Molecular Genetics, Institute of Child Health, Londres,
(6) Unité de Génétique Clinique, Hôpital Mère-Enfant, CHU de Lyon,
(7) Consultations de

La monosomie 1q terminale (1qter) est une affection génétique syndromique rare décrite en 1976 par Mankinen et al., due à une délétion de la partie terminale du bras long du chromosome 1 (bandes q42 à q44). Elle associe diversément une déficience mentale, un retard de croissance, une microcéphalie, une dysmorphie faciale et des malformations viscérales et du système nerveux, notamment une agénésie du corps calleux. A ce jour, les gènes responsables des signes cliniques de la monosomie 1qter n’ont pas été identifiés, bien que plusieurs publications aient suggéré le rôle potentiel de plusieurs d’entre eux dans la déficience mentale, la microcéphalie et l’agénésie du corps calleux. A partir de 11 patients recensés dans plusieurs centres nous avons effectué une étude moléculaire puis une recherche de corrélation génotype / phénotype afin de tenter d’identifier dans cette région des gènes candidats pour les principaux signes cliniques de la monosomie 1qter.

Ces 11 patients, dont la délétion avait été mise en évidence par cytogénétique, cytogénétique moléculaire ou génétique moléculaire (caryotype, FISH, MLPA, CGH-array), ont été analysés par CGH-array (puces agilent 44K), afin de borner avec précision les régions délétées. Cette étude a montré que chez 4 patients la monosomie 1qter n’était pas isolée et ces patients ont été exclus du reste de l’étude. Pour les 7 autres, les résultats de CGH-array ont été confirmés par PCR semi-quantitative en temps réel. La recherche de corrélation génotype / phénotype a été faite tout d’abord sur les données cytogénétiques de nos 7 patients et de 61 cas de monosomie 1qter isolée de la littérature, puis sur des données moléculaires plus fines pour les patients dont les délétions étaient bornées précisément (nos 7 cas et 26 patients publiés).

Ce travail, qui porte sur la plus grande série de patients analysés ne nous a pas permis de mettre en évidence de gènes ou régions d’intérêt qui seraient impliqués dans les signes dysmorphiques et malformatifs de ce syndrome, invalidant ainsi les résultats publiés par certaines équipes. En revanche, une analyse limitée aux délétions qui n’intéressent que la région 1q44, incluant 3 de nos patients et 9 patients de la littérature, nous a permis d’identifier trois gènes potentiellement impliqués dans la déficience mentale : FAM36A, HNRPU et EFCAB2. Ce résultat, concordant avec des données récentes de la littérature, ouvre des perspectives à la compréhension des mécanismes physiopathologiques de la déficience mentale en général.
Les inversions péricentriques sont décrites sur l’ensemble des chromosomes humains. L’inversion du chromosome 9 par exemple est approximativement décrite dans 1 à 1.5% de la population générale. A ce jour, il n’existe que 8 publications concernant les inversions péricentriques du chromosome 11 car celle-ci apparaît comme relativement stable. Nous décrivons ici le cas d’une jeune fille de 18 ans (Fatima) opérée dès l’enfance d’une fente labio-palatine, présentant une hémihypertrophie corporelle, une microptalmie, des anomalies desextrémités avec clinodactylie du 5ème doigt, un important retard staturo-pondéral (taille de 1,40 m à 16 ans) et un retard mental. Le caryotype est normal 46,XX.

Devant cette association syndromique hautement évocatrice d’une anomalie chromosomique et la notion de cas similaires dans la famille, un examen par CGH array est réalisé. Il révèle la présence d’une délétion de 10 Mb en 11q21-q22.3 et un gain de 6.3 Mb en 11p12-p14, confirmés en PCR quantitative.

Indépendamment de l’intérêt diagnostique apporté par la CGH array, le déséquilibre délétion/duplication observé sur des bras différents d’un même chromosome nous ont clairement indiqué une possible inversion péricentrique familiale, confirmée par l’étude en FISH des métaphases maternelles par l’utilisation de BACs ciblant la région d’intérêt (le caryotype maternel était apparemment normal). La CGH array est aujourd’hui un outil diagnostique devenu indispensable devant tout syndrome polymalformatif à caryotype normal car il peut non seulement révéler une anomalie chromosomique cryptique mais en fonction du déséquilibre observé, en déduire le type de réarrangement parental le plus probable : translocation réciproque, inversion para ou péricentrique.
Insuffisance ovarienne prématurée et anomalie autosomique : A propos d’un cas et revue de la littérature

Ayed W. (1,2), Talmoudi F. (1,2), Kilani O. (1), Abidli N. (1), Guermani H. (1,2), Amouri A. (1,2)

(1) Laboratoire de Cytogénétique, Institut Pasteur de Tunis
(2) Unité de Recherche Exploration Moléculaire de maladies Orphelines d’Origine Génétique, Institut Pasteur de Tunis, Tunisie

L’insuffisance ovarienne prématurée ou IOP est définie comme étant une défaillance ovarienne périphérique caractérisée par une aménorrhée de plus de 6 mois survenant avant l’âge de 40 ans et associée à un taux de FSH > 40 mUI/ml. C’est une affection fréquente dans le monde, touchant 1% des femmes. Cette affection peut être secondaire à une exposition toxique (chimiothérapie, radiothérapie) mais peut être aussi d’origine génétique.

Parmi les étiologies génétiques, les anomalies chromosomiques touchant le chromosome X sont les plus incriminées dans la survenue des IOP. Il peut s’agir d’anomalie de nombre, de structure ou de translocation X/autosome. Les anomalies autosomiques sont très rarement décrites.

Nous rapportons ici l’observation d’une patiente âgée de 33 ans consultant pour une aménorrhée secondaire et une infertilité primaire. L’examen clinique et l’échographie pelvienne étaient normaux. Au caryotype, une translocation réciproque entre les chromosomes 12 et 19 (t(12 ;19) (q13 ;q13)) a été trouvée.

L’association IOP – anomalie de structure autosomique a été rapportée pour les chromosomes 2 ; 3 ; 12 ; 13 ; 14 ; 15 et 21. Cette observation constituerait la première association IOP, anomalie du chromosome 19. À la lumière de la littérature, nous tenterons de discuter la relation entre les translocations autosomiques et l’insuffisance ovarienne prématurée.
Le syndrome de Turner avec un isochromosome Xq. A propos de 2 nouvelles observations tunisiennes

Ayed W. (1,2), Talmoudi F. (1,2), Kilani O. (1), Abidli N. (1), Guermani H. (1,2), Makni S. (3), Bouayed Abdelmoula N. (4), Amouri A. (1,2)

(1) Laboratoire de Cytogénétique, Institut Pasteur de Tunis, Tunisie
(2) Unité de Recherche Exploration Moléculaire de maladies Orphelines d’Origine Génétique, Institut Pasteur de Tunis, Tunisie
(3) Hopital d’Enfants, Tunis, Tunisie
(4) Faculté de Médecine de Sfax

Le syndrome de Turner est dû à une monosomie complète ou partielle d’un des deux chromosomes X chez la femme. L’anomalie peut être homogène ou en mosaïque. Le phénotype est très hétérogène, et inclut fréquemment ; une petite taille, une dysgénésie gonadique, des signes dysmorphiques, des malformations cardiaques et rénales.

Dans la plus part des cas, la perte d’un chromosome X est totale (45,X) mais d’autres anomalies ont été décrites (délétion, isochromosome, chromosome dicentrique, mosaïques de l’X et de l’Y).

Nous rapportons les observations de deux patientes adressées pour exploration d’une aménorrhée primaire. La première est âgée de 15 ans. Cliniquement, des signes en faveur de syndrome de Turner ont été notés : une petite taille, un écartement mamelonnaire et un cubitus valgus. A partir du sang périphérique, un caryotype standard avec banding R a été pratiqué et a montré la formule 46,X,i(Xq). La deuxième patiente qui âgée de 23 ans, présentait aussi un phénotype évocateur du syndrome de Turner et consultait pour aménorrhée primaire, impubérisme et retard staturo-ponderal. Au caryotype standard elle avait la formule chromosomique 46,X,idic(X)/47,X,idic(X),i(X).

Une étude par FISH utilisant la sonde centromérique de l’X a était complétée ce qui a permis de confirmer les remaniements de structure de l’X et la nature dicentrique et d’évaluer correctement les différentes populations cellulaires.

Les informations apportées par les techniques de FISH dans ces observations démontrent bien leur intérêt dans la précision du diagnostic cytogénétique.
Caractérisation moléculaire d’une délétion interstitielle 6q25.2q26 chez une enfant de 4 ans présentant un retard de développement sévère, une agénésie du corps calleux et une hypertrichose

Gwanmesia L. (1), Béna F. (1), Gimelli S. (1), Antonarakis SE. (2), Bottani A. (1)

(1) Service de Médecine Génétique, Hôpital Universitaire de Genève, Genève, Suisse.
(2) Département de Médecine et de Développement, Université de Genève, Genève, Suisse.

Des microdélétions de la région 6q25.2q25.3 ont été récemment rapportées chez quatre patients avec retard de développement, microcéphalie, agénésie du corps calleux, surdité et signes dysmorphiques (Nagamani et al., EJHG, 2009).

Nous décrivons une enfant de 4 ans, chez qui une délétion hétérozygote de novo de la région 6q25.2q26 a été mise en évidence par array-CGH (Agilent, 244K).

La patiente est née par césarienne à 38 semaines de grossesse sans particularité.

Les paramètres de naissance étaient 2870 g (p10-50), taille 46 cm (p10-50) et périmètre crânien 33 cm (p50).

L’examen à trois révèle une hypotonie sévère, une hernie omobilcal, de larges oreilles, et une macrosomie. Une xérose majeure des mains et des pieds ainsi qu’une hypertrichose sont identifiés (visage, dos, membres supérieurs).

Les examens audio et ophtalmologiques sont normaux. Les analyses échographiques et IRM cérébraux à 4 mois montrent une agénésie du corps calleux sans autre anomalie.

A l’âge de 4 ans, un retard psychomoteur sévère (absence de marche et de langage) ainsi qu’une microcéphalie sont notés, ainsi qu’un retard de croissance (poids et taille en dessous du 3ème percentile).

La région déletée en 6q25.2q25.3 chez notre patiente chevauche, chez les cas rapportés, une région critique de 3.52 Mb et emporte 12 gènes (UCSC, hg18). Parmi ces gènes, TIAM2, NOX3 et SYNJ2 sont des candidats pour le développement normal du cerveau. L’haploinsuffisance d’un ou plusieurs de ces gènes peuvent être la cause du retard mental, de la microcéphalie, et/ou de l’agénésie du corps calleux. De plus, un locus pour l’hypertrichose pourrait être localisé dans le segment déleté.
Diagnostique d'un microremaniement du gène KCNK9 associé à un syndrome de Birk-Barel par caryotype moléculaire haute résolution

Perche O. (1,2), Kervran D. (1), Baala L. (1,2), Menuet A. (2), Mortaud S. (2), Robin V. (2), Briault S. (1,2)

(1) Structure Interne de Génétique, Centre Régional Hospitalier d’Orléans, Orléans
(2) IEM - UMR6218 - Université d’Orléans, Equipe « Génétique expérimentale et moléculaire », 45000 Orléans

Introduction:
La recherche de gènes impliqués dans l’autisme et les déficiences mentales nous a amené à étudier un patient qui présentait une déficience mentale sévère, une dysmorphie faciale, des anomalies dentaires et des fixations ostéo-articulaires avec atrophie musculaire sévère. Devant ce tableau clinique, et après vérification de la normalité du caryotype standard, ce patient a été exploré par caryotype moléculaire haute résolution.

Matériel et Méthode:
L’ADN génomique du patient et de ces parents est extrait à partir de sang périphérique (Flexigen®). Les remaniements (délétions ou duplications) sont identifiés par utilisation de la puce génomique Affymetrix SNP6.0 qui permet l’analyse des CNV (copy number variation). Après lecture de la puce, les résultats sont analysés avec une résolution de 1kb – 5 marqueurs.

Résultats:
L’analyse par puce Affymetrix SNP6.0 de l’ADN de notre patient a permis d’objectiver 156 remaniements génomiques : 68 délétions de taille de 3 à 72 kb et 88 duplications de taille de 4 à 206 kb, dont 68 concernaient des régions intragéniques. Parmi ces anomalies géniques, une délétion hétérozygote de 7 kb du gène KCNK9 localisé en 8q23.3 (chr8 : 140765814-140772383) nous a semblé devoir être considérée. Ce gène code pour un canal ionique potassique de la famille K2P exprimé au niveau cérébral. Des mutations de ce gène, soumis à empreinte maternelle, ont été associées à un syndrome de déficience mentale avec dysmorphie faciale et hypotonie (Birk Barel Syndrome ; Barel et al., 2008) comparable au phénotype de notre patient. Cette délétion hétérozygote du gène KCNK9 est aussi observée chez la mère.

Conclusion:
L'utilisation de cette technique de caryotype moléculaire haute résolution constitue une approche intéressante et ouvre la voie à l'identification de microremaniements géniques qui échappent aussi bien aux outils de la génétique chromosomique qu’aux approches de CGH array classique.
Etude par CGH-array d'une duplication partielle du chromosome 11 (11q22.1qter) issue d'une translocation (7;11) d'origine paternelle

Ben Abdallah Bouhjar I. (1), Hannachi H. (1), Labalme A. (2), Mougou S. (1), Sanlaville D. (2), Saad A. (1,3), Elghezal H. (1,3)

(1) Service de cytogénétique et de biologie de la reproduction, Hôpital universitaire Farhat Hached, Sousse.
(2) Hospices civils de Lyon, Service de cytogénétique constitutionnelle, Centre de Biologie et de Pathologie Est, Lyon.
(3) Unité Commun de Recherche Génétique, Faculté de médecine, Sousse, Tunisie.

Introduction:
Nous rapportons le cas d'un garçon âgé de 3 ans, issu de parents bien portants et non consanguins. Il est enfant unique, né au terme d'une grossesse normale. L'enfant a été adressé en consultation de cytogénétique pour un retard mental profond, une dysmorphie faciale, une microcéphalie et une malformation cérébrale.

Matériel et Méthode:
Un bilan biologique a été effectué. Le caryotype standard révèle la présence d'un chromosome 7 dérivatif (46, XY, der (7) t (7;11) (p22.3;q22.1)). L'exploration cytogénétique chez les parents a montré que le chromosome 7 dérivatif est hérité d'une translocation réciproque équilibré chez le père (46, XY, t (7p 22.3 ; 11q 22.1). Nous avons étudié le cas présenté par CGH-array en utilisant des puces Agilent haute résolution (44000 oligonucléotides).

Résultats:
Les résultats obtenus montre un gain de matériel génomique d'environ 33.4 Mb du chromosome 11 dans la région 11q22.1 11q25 avec le 1er oligo dupliqué A_14_P103914 : 100505885-100505944 (hg18) jusqu'au dernier oligo dupliqué A_14_P129542 : 133951311-133951370 (hg18) avec un premier oligo non dupliqué A_14_P131677 : 100858863-100858922.

L'analyse des données issues de la CGH-array a aussi mis en évidence une délétion sur le chromosome 7 d'environ 150 Kb dans la région 7p22.3, entre les oligonucléotides A_14_P118129 et A_14_P124972 (en position 149268 et 289541).

Sur le chromosome 7 dérivatif il y a trois gènes déletés AK024243, AK310145 et FAM20C qui ne semblent pas être impliqués dans le retard mental car ce sont des gènes très polymorphes, par contre la duplication du 11q22.1 11q25 porte environ 200 gènes dupliqués et semble être liée au retard mental, à la dysmorphie faciale, à son hernie inguinale ainsi que l'atrophie du corps calleux révélés par IRM.

Conclusion:
Cette observation met en évidence d'une part l'intérêt de la CGH-array dans l'exploration des marqueurs chromosomiques, d'autre part la possibilité d'établir une relation génotype phénotype pour pouvoir donner un conseil génétique dans ces cas.
Etude, par cytogénétique moléculaire, de remaniements chromosomiques impliqués dans l'insuffisance ovarienne prématurée


(1) CPDN, Hôpital Robert Debré, APHP, Paris
(2) Service d'endocrinologie, Hôpital Robert Debré, APHP, Paris
(3) Service d'endocrinologie, Hôpital Saint-Antoine, APHP, Paris
(4) Service d'histologie embryologie cytogénétique, Hôpital Antoine Béclère APHP, Clamart

Introduction:
L'insuffisance ovarienne prématurée (IOP)(OMIM 311360 et 300511) est définie par une aménorrhée durant plus de 4 mois associée à une augmentation des gonadotrophines (Follicle Stimulating Hormone (FSH) supérieure à 40 UI/L) chez une femme avant l’âge de 40 ans.

Les causes sont multiples (chromosomiques, géniques, auto-immunes, chimiothérapie...).
Parmi les causes chromosomiques, il existe des anomalies du chromosome X : syndrome de Turner homogène ou en mosaïque, délétion ou translocation impliquant le bras long du chromosome X (2 régions critiques connues POF1 et POF2) et les translocations (X;autosome).
Les translocations entre autosomes associées à une IOP sont rarement décrites, À notre connaissance, il existe 3 cas décrits dans la littérature : 2 cas de t(13 ;14) et un cas de t(2 ;15).
Nous rapportons les cas de 3 jeunes filles présentant une insuffisance ovarienne avec anomalies chromosomiques.

Cas cliniques :
Patiente 1 : âgée de 14 ans, née à terme après une grossesse marquée par un retard de croissance intra-utérin. Elle présente une aménorrhée primaire avec un taux de FSH à 75UI/L.
Patiente 2 : âgée de 15 ans, aménorrhée secondaire de courte durée. Le taux de FSH est à 20 UI/L avec le reste du bilan hormonal témoignant d'une IOP débutante.
Patiente 3 : âgée de 15 ans, présentant un retard psychomoteur sévère avec microcéphalie, un retard staturo-pondéral associé à des signes de Turner. Il s’agit d'une 1ere enfant issue de parents non consanguins née au terme d’une grossesse marquée par un hydramnios. A la naissance, l’IRM a mis en évidence une agénésie du corps calleux avec un aspect simplifié de la gyration fronto-temporelle associée à une épilepsie. Son taux de FSH est à 43.5 UI/L.
Dans les 3 cas l’inhibine B et AMH sont indétectables, témoignant de l'insuffisance ovarienne.
Investigations paracliniques : caryotype standard, cytogénétique moléculaire (FISH et CGH-array)
Cas 1 : 45,X/46,X,idic(X)(q24) (Turner en mosaïque)
Cas 2 : 46,X,dup(X)(q25q26.3) entraînant une trisomie partielle de la région Xq23q26.3. arr Xq25q26.3(121,240,684-135,325,408)x3
Cas 3: 46,XX,der(1)t(1;5)(q43;p15.33) conduisant à une trisomie partielle 5p et monosomie partielle 1q. arr 1q43q44(240,6Mb-247,Mb)x1,5p13.33(0.5Mb-1.5Mb)x3

Conclusion :
Pour les deux premiers cas, le chromosomique X est impliqué : mosaïque Turner et duplication interstitielle du bras long du chromosome X déjà répertorié dans les IOP. Pour le cas 3, il s’agit d’une anomalie chromosomique impliquant deux autosomes, le gène AKT3 localisé en 1q43 exprimé dans les ovaires pourrait être responsable à la fois des anomalies cérébrales et des troubles de la reproduction.
Duplications 12p caractérisées par CGH-array : à propos de 2 observations


(1) Service de génétique, CHU Reims,
(2) IME l’EPARS Marchais
(3) Service de Pédiatrie, CHU Reims
(4) CAMSP, Laon

Les duplications du bras court du chromosome 12 sont des anomalies rares dont une quarantaine de cas ont été publiés, qu’il s’agisse de duplications complètes ou partielles, pures ou non. La majorité de ces remaniements résulte de la malségrégation d’une translocation parentale et non de survenue de novo.

Les cas rapportés ont permis la description clinique du « syndrome de trisomie 12p ». Il associe un poids de naissance normal ou augmenté, des mains et pieds courts, une hypotonie, un retard mental modéré à sévère sans acquisition du langage, des malformations congénitales et une dysmorphie faciale caractéristique. La dysmorphie faciale comprend une turricéphalie, une face ronde, un front proéminent, un hypertélorisme, un nez court avec des narines antéversées, un long philtrum et des oreilles anormales.

Nous rapportons 2 cas de duplications 12p, de taille et de phénotype différents, dépistés par les techniques de cytogénétique classique et caractérisés par CGH-array et FISH.

La première observation est celle d’un enfant porteur d’une duplication 12p inversée intéressant tout le bras p de 29175 kb+/-481kb, de novo, associée à une délétion 12p terminale 1314 kb+/-541kb. Le phénotype est proche de la description classique du syndrome de trisomie 12p avec un retard mental, une hypotonie majeure et une dysmorphie faciale caractéristique.

La seconde observation est celle d’un adolescent porteur d’une duplication directe de la région 12p12.3p13.1 de 6867+/-956 kb, familiale, et non encore rapportée dans la littérature. Comme sa mère porteuse du même remaniement, ce patient, est obèse, il a un retard mental modéré et des troubles du comportement. La dysmorphie faciale observée n’est pas caractéristique du « syndrome de trisomie 12p » et aucune malformation n’a été retrouvée.

Cette observation familiale semble unique et il serait intéressant de colliger d’autres patients avec cette duplication restreinte à la région 12p12.3p13.1 afin de confirmer le phénotype plus modéré que celui décrit dans la trisomie 12p complète.

**Conclusion** : ces observations pourront contribuer à la corrélation génotype-phénotype des duplications du bras p du chromosome 12.
Diagnostic prénatal d’une tétrasomie 13q31.1-qter due à un chromosome marqueur néocentromérique


(1) Service d’Histologie Embryologie Cytogénétique, Inserm U935, Hôpital Antoine Béclère, Clamart
(2) Service de Cytogénétique, Hôpital Robert Debré, Paris
(3) Service d’Anatomie Pathologique, , Hôpital Antoine Béclère, Clamart
(4) Service de Gynécologie Obstétrique, , Hôpital Antoine Béclère, Clamart

Introduction :
Les chromosomes marqueurs surnuméraires (CMS) sont détectés dans environ 1,5/1000 cas en diagnostic prénatal et dans 0,24/1000 nouveaux nés. Les CMS ne contenant pas de séquences alpha satellites sont rares. Ces CMS comportent un néocentromère qui correspondent à des centromères fonctionnels formés à partir de régions chromosomiques non centromériques. La formation d’un néocentromère permet donc d’assurer la stabilité mitotique des fragments chromosomiques ne comportant pas de séquences alpha satellites.

Cas clinique :
Nous rapportons le cas d’une femme enceinte de 22 ans, primigeste. Une amniocentèse a été réalisée à 16 SA pour une échographie fœtale anormale à 12SA avec présence d’un hygroma et une hypoplasie du cervelet chez le fœtus. L’étude cytogénétique a montré une formule chromosomique 47,XY,+mar dn. Une étude par hybridation in situ fluorescente avec des sondes spécifiques du chromosome 13 et des sondes pancentromériques a montré que le CMS correspondait à une inversion-duplication de la région distale du chromosome 13q avec la présence d’un néocentromère. L’étude par CGH array avec une puce BAC (Perkin Elmer) a montré un gain de la région 13q31.1-qter.

Après conseil génétique, une interruption médicale de grossesse a été réalisée selon la loi française. L’étude foetopathologique a montré un fœtus de sexe masculin avec une dysmorphie, un hygroma cervical kystique, une hexadactylie de la main droite et du pied gauche, un défaut d’accolement du tube digestif, une dysplasie rénale et un micropénis avec probable hypospade. Le CMS a été observé dans tous les différents tissus analysés (villosités choriales, poumons, muscle).

Conclusion :
Nous rapportons le cas d’un chromosome marqueur surnuméraire néocentromérique 13q conduisant à une tétrasomie 13q31.1-qter, diagnostiqué en anténatal et apparu de novo. Quatre cas de CMS néocentromériques avec un point de cassure en 13q31 ont été décrits dans la littérature. Il s’agit du deuxième cas décrit en diagnostic prénatal.
Duplications 10q proximales et anomalies du développement : A propos de deux observations


(1) Service de Génétique, hôpital Nord, CHU Saint Etienne, 42055 SAINT ETIENNE cedex 2
(2) Plateforme CGH array, Groupement Hospitalier Est, 69677 BRON cedex

Nous rapportons l’observation de deux enfants adressés à la consultation pour difficultés de développement et pour lesquels une duplication proximale des bras longs du chromosome 10 a été mise en évidence lors de l’étude du caryotype. Ces deux enfants ont pu bénéficier d’une étude en CGH array qui confirme la nature de l’anomalie cytogénétique identifiée et précise la taille exacte de la duplication.

**Patient 1** : enfant de 6 ans qui présente un comportement autistique : aucun langage tendance à l’isolement, aucun désir de communication. Il est l’aîné d’une fratrie de deux, sa sœur n’a pas de difficultés. L’enquête familiale nous apprend que la maman a eu des difficultés scolaires et n’a jamais travaillé, elle est néanmoins autonome dans la vie courante et élève ses deux enfants. Loïc est né avec un poids de naissance de 2500g, une taille à 49cm et un PC à 32cm. Il conserve un périmètre crânien à -3DS. Il a une dysmorphie faciale avec de petites fentes palpébrales, un ptosis et un épicanthus, un strabisme, le philtrum est bien marqué. Il est également porteur d’un CIV musculaire.

**Patient 2** : enfant de 4 ans qui présente un retard de développement avec retard de langage. Il s’agit du premier enfant d’un couple sans antécédent. Emma est née avec un poids de 2660g, une taille de 47cm, un PC à 31.5cm. sa croissance montre un poids et une taille autour de -2DS pour un périmètre crânien à -3DS. On a la notion d’un retard dans les acquisitions psychomotrices et elle ne prononce aucun mot signifiant. Elle présente un syndrome dysmorphique avec une sellière nasale marquée, de petits yeux enfoncés, un épicanthus, un ptosis, un philtrum assez court, une lèvre inférieure charnue et éversée. Les doigts sont effilés. Elle n’a pas d’anomalie viscérale.

Pour ces deux enfants une étude en CGH array, réalisée après analyse cytogénétique conventionnelle, confirme l’existence d’une duplication :

- de 27 Mb pour le premier enfant, de la région 10q11.2 à 10q21.3, d’origine maternelle.
- de 39 Mb pour le deuxième, de la région 10q11.21 à 10q23.1, de novo

Nous comparons les résultats obtenus pour ces deux enfants aux données de la littérature.
Délétion Xp21.3 et autisme : à propos d’une délétion familiale


Service des maladies congénitales et héréditaires EPS Charles Nicolle TUNIS

Introduction:
Les monosomies partielles de l’X peuvent s’accompagner de manifestations cliniques variables selon la région concernée, nous présentons l’observation d’une fille présentant un syndrome autistique avec délétion Xp21.3.

Matériel et Méthode:
Il s’agit d’une fille âgée de 4 ans présentant un retard du langage et des troubles autistiques et qui est adressé pour un caryotype constitutionnel.

La pratique le caryotype constitutionnel a été complété par une hybridation in situ pour affiner les points de cassure

Résultat:
Dans les antécédents personnels on retrouve un développement moteur normal. L’examen clinique trouve une croissance normale, un strabisme convergent, une racine du nez large, des lèvres fines et un micro rétrognathisme. Le caryotype sanguin a objectivé une délétion Xp21.3. La mère présente la même délétion mais elle est phénotypiquement normale. L’étude en cytogénétique moléculaire a montré, en utilisant des sondes télomérique et du locus Kallman (Xp22.3), une délétion emportant le télomère et le locus KAL. Une étude par d’autres sondes est envisagée dans le but d’affiner le point de cassure. La région déletée englobe de nombreux gènes qui pourraient être impliqués dans la pathogénèse de l’autisme chez notre patiente dont la neuroligine 4.

Conclusion:
Nous proposons d’étudier l’inactivation de l’X afin d’étudier les profils d’inactivation chez la mère et sa fille pour expliquer l’expressivité variable de la délétion.

Après l’affinement des points de cassure une étude moléculaire sera réalisée pour démontrer quels sont les gènes qui seraient impliqués dans le phénotype de notre patiente.
Diagnostic d’un anneau du chromosome 17 en mosaïque chez un enfant suspect de Sclérose Tubéreuse de Bourneville


(1) Cytogénétique, Biologie de la Reproduction, CECOS, Pédiatrie génétique, Centre Hospitalier Universitaire d’Amiens & Université de Picardie
(2) Génétique, Centre Hospitalier Régional Universitaire de Lille & Université de Lille

Introduction :
La sclérose tubéreuse de Bourneville, de transmission autosomique dominante, se manifeste fréquemment par une épilepsie. Deux gènes sont principalement incriminés TSC1 et TSC2. Nous rapportons le cas d’un garçon de 3 ans, présentant une épilepsie, pour lequel ce diagnostic a été évoqué. Dans le bilan étiologique, le caryotype constitutionnel révèle un anneau d’un chromosome 17, en mosaïque.

Observation et méthode :

Le caryotype constitutionnel a été réalisé en bandes RHG et GTG sur 60 mitoses. Une CGHarray est réalisée, la FISH est en cours. Une étude moléculaire des gènes TSC1 et TSC2 a été menée.

Résultats :
La formule chromosomique s’écrit :

mos 46,XY,r(17)(p13;q25)[42]/45,XY,-17[5]/46,XY[3].

La recherche de mutation et le séquençage des gènes TSC1 et 2 ont révélé un changement de séquence N762S dans l’exon 18 du gène TSC1, sans délétion/duplication. Il est également présent chez le père qui présentait 2 tâches café au lait.

La CGHarray ne montre pas de déséquilibre génétique (selon la résolution de la puce).

Discussion :
Dans notre observation, l’épilepsie peut être rattachée soit à cet anneau, comme cela est parfois observé dans les épilepsies avec anneau du chromosome 20, soit à la «mutation» décélée. Celle-ci, non décrite dans la littérature, est considérée comme un polymorphisme par le logiciel «Polyphen».

Par ailleurs, une forme frustre de neurofibromatose, liée à l’haploinsuffisance du gène NF1 engendrée par la monosomie 17 en mosaïque, ne peut être totalement écarté devant les tâches café au lait.

Enfin, la perte d’une copie du gène TP53 est écartée par le résultat de la CGHarray.

Conclusion :
Seuls, le suivi de l’enfant et le bilan familial permettront d’établir un diagnostic précis et guideront la conduite à tenir et le conseil génétique en cas de nouvelle grossesse.
Délétion interstitielle de la région chromosomique 6q16.3q21 : présentation d'un nouveau patient et revue de la littérature

Puechberty J. (1,2), Schneider A. (2), Lefort G. (2), Tournaire M. (2), Sarda P. (1,2), Geneviève D. (1), Coubes C. (1), Pinson L. (1), Girard M. (2), Chaze AM. (2), Haquet E. (1), Vincent M. (1), Blanchet P. (1)

(1) Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, CHRU Montpellier.
(2) Laboratoire de Génétique Chromosomique, Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, CHRU Montpellier.

Nous rapportons le cas d'une délétion interstitielle de la région 6q16.3q21 chez une petite fille âgée de 8 ans et demi.

La patiente a été adressée à notre Département de Génétique Médicale pour un retard du développement psychomoteur associé à une dysmorphie. La période prénatale a été marquée par un retard de croissance intra-utérin. L'examen clinique montre une dysmorphie faciale (front bombé, sourcils arqués, ptôsis bilatéral avec des fentes palpébrales orientées en bas et en dehors, visage légèrement allongé, macroglossie, oreilles dysplasiques) associée à un strabisme et une hypermétropie. Il existe une asymétrie du corps et du visage, des troubles de la pigmentation cutanée asymétriques, une hyperlaxité ligamentaire. Le retard du développement psychomoteur touche le tonus avec retard d'acquisition de la marche et ataxie et un retard du langage avec échalalies. Elle présente un comportement joyeux et amical. La radiographie du squelette montre un retard de l'âge osseux (18 mois à 5 ans d'âge légal), 11 paires de côtes, un retard d'ossification des branches ischio-pubiennes, une coxa valga et des diaphyses fines des os longs. Le développement psychomoteur s'est amélioré avec une prise en charge médicale et éducationnelle adaptée.

Les études chromosomiques initiales sur prélèvement sanguin utilisant les méthodes cytogénétiques classiques (bandes RHG et GTG) ont été interprétées comme normales. L'analyse sur puce à ADN (SNP 6.0 Affymetrix) a mis en évidence une délétion interstitielle de taille 4,85 Mb sur le bras long d’un chromosome 6 (6q16.3q21).

A ce jour, moins d’une centaine de délétions 6q ont été rapportées et elles sont subdivisées en trois groupes cytogénétiques (proximales, intermédiaires et terminales). Les délétions intermédiaires constitutionnelles du bras long du chromosome 6 sont des événements chromosomiques rares avec une vingtaine de patients rapportés dans la littérature.

Nous comparons le phénotype observé chez notre patiente à ceux observés chez les patients qui ont des délétions chevauchantes rapportés dans la littérature et nous discutons les gènes candidats potentiellement responsables des caractéristiques phénotypiques des patients ayant une délétion 6q16.3q21.
Le syndrome 3p- est habituellement corrélé à un retard de croissance important, une dysmorphie faciale caractéristique et retard mental. Cependant, la délétion terminale 3p25-pter a aussi été décrite dans deux familles distinctes, transmise de mère à enfant sans phénotype anormal.

Nous avons eu l’observation d’un patient à l’examen clinique normal, adressé pour échecs de la reproduction, dont le caryotype sanguin a mis en évidence une délétion 3p25-pter confirmée par hybridation in situ et MLPA.

A partir de ce cas, nous avons passé en revue la littérature et les différentes corrélations phénotype-génotype établies jusqu’à présent.
Réarrangements chromosomiques complexes en mosaïque de novo sur le chromosome 9 chez une patiente atteinte d’une épilepsie syndromique: qui est responsable du phénotype ?


(1) Service de Cytogénétique Constitutionnelle, GHE, CHU de Lyon
(2) Service de Génétique Moléculaire, Hôpital Edouard Herriot, CHU de Lyon
(3) Epilepsie, sommeil et explorations fonctionnelles neuropédiatriques, GHE, CHU de Lyon
(4) EA 4171, Université Claude Bernard, Lyon 1

Elise S est adressée en consultation de génétique en raison d’un retard des acquisitions, d’une épilepsie et d’une dysmorphie faciale discrète. Le caryotype réalisé sur lymphocytes a révélé la présence d’un marqueur chromosomique surnuméraire (MCS) en anneau dans 40% des cellules examinées et d’une translocation apparemment équilibrée entre les bras courts des chromosomes 9 et 21 dans 10% des cellules examinées. Le caryotype des parents est normal.

Afin de caractériser le déséquilibre chromosomique, une CGH-array sur une puce oligonucléotides 244K personnalisée, densifiée au niveau des régions péricentromériques, a été réalisée. Cet examen a permis d’objectiver un gain en mosaïque de l’ensemble du bras court du chromosome 9 d’environ 45Mb (de 210,253 à 45,359,327 ; hg18), associé à une perte homogène hétérozygote d’environ 8,5 Mb en 9q13q21.13 (de 70,174,173 à 78,718,791 ; hg 18).

Afin de confirmer la trisomie 9p en mosaïque mise en évidence en CGH-array, une étude en FISH a été réalisée avec les sondes 9pter et centromérique du chromosome 9. Trois populations cellulaires ont été observées : i) le MCS(9) en anneau dans 36% des cellules examinées, ii) le dérivé 9 de la translocation (9;21) dans 8% des cellules examinées, iii) ainsi qu’une troisième population cellulaire, de façon inattendue, comportant un isochromosome 9p dans 7% des cellules examinées. Par ailleurs, la délétion 9q13q21.13 a été confirmée avec le BAC RP11-404E6 localisée en 9q21.3. Cette délétion est survenue de novo.

La patiente présente donc un réarrangement chromosomique complexe en mosaïque impliquant le chromosome 9 comportant un anneau, un isochromosome 9p, un dérivé de translocation et une délétion. Ce réarrangement est responsable d’une trisomie de l’ensemble du bras court du chromosome 9 dans environ 15 % des cellules qui rend probablement compte du phénomène de la patiente. En effet, l’anneau ne contient probablement pas de régions euchromatiques à la vue des profils obtenus en CGH-array et la délétion 9q13q21.13 a été récemment rapportée comme un possible polymorphisme de grande taille chez plusieurs individus présentant un phénotype normal. Nous discuterons des gènes impliqués dans le phénotype, en particulier l’épilepsie, ainsi que des facteurs modulateurs.

Enfin, nous tenterons de proposer un mécanisme pouvant expliquer les différents remaniements mis en évidence chez cette patiente.
Caractérisation par CGH-array d’une délétion terminale 5p15.33p15.2 non détectée par FISH


(1) Laboratoire de Génétique, EA 4368-IHF111, Nancy Université, CHU de Nancy, Nancy, France
(2) Service de Médecine Infantile III et Génétique Clinique, CHU de Nancy, Nancy, France

Introduction
Le syndrome du cri du chat résulte d’une délétion de taille variable du bras court d’un chromosome 5. Plusieurs régions critiques ont été définies. La région critique du « cri du chat » a été localisée en 5p15.3. La région critique de la microcéphalie et du retard mental est plus centromérique en 5p15.2. Le plus souvent, la délétion emporte ces 2 régions.

Matériel et Méthode
La sonde FISH communément utilisée pour le diagnostic du syndrome du cri du chat est située en 5p15.2 et contient le gène CTNND2 impliqué dans le développement cérébral et donc candidat pour le retard mental.

Résultats
Nous rapportons ici le cas d’une patiente âgée de 1,5 mois présentant un retard de croissance intra-utérin (RCIU) homogène, un rétrognathisme, un branchiome prétragien droit et un colobome de la paupière supérieure gauche. Ce tableau de malformations faciales bilatérales a fait évoquer un syndrome de Treacher Collins atypique et le branchiome prétragien, un syndrome de Goldenhar atypique. L’association RCIU, rétrognathisme, branchiome prétragien et également un cri particulier a conduit en parallèle à la recherche d’un syndrome du cri du chat.

L’étude par FISH du locus CTNND2 s’est révélée normale.

L’étude ultérieure par CGH-array a permis de mettre en évidence une microdélétion 5p15.33p15.2 d’une taille de 9,3 Mb avec un point cassure dans la région distale de la sous-bande 5p15.2. Cette délétion ne contient pas le gène CTNND2. L’utilisation d’une sonde double couleur s’hybridant au locus FLJ25076 (zone critique du « cri du chat » en 5p15.3) d’une part, et au locus CTNND2 (zone critique de la microcéphalie et du retard mental en 5p15.2) d’autre part, a permis de confirmer la microdélétion restreinte à FLJ25076.

Conclusion
Ce cas souligne l’importance, devant un tableau clinique évoquant un syndrome du cri du chat, de bien explorer par FISH les deux régions critiques 5p15.3 et 5p15.2.
Etude par SNP-array de patients présentant un autisme et/ou un retard mental et porteurs d’un remaniement chromosomique apparemment équilibré


(1) Département de Génétique Hôpital Robert-Debré Paris
(2) Inserm U952
(3) Inserm U955
(4) Laboratoire de Cytogénétique CHU Grenoble.

Les troubles du spectre autistique (TSA) et le retard mental sont des pathologies neurodéveloppementales présentant une grande hétérogénéité clinique et étiologique. Ces deux pathologies sont souvent associées à des maladies monogéniques ou des anomalies chromosomiques dont le taux varie entre 5 et 10 % des individus atteints. Parmi les anomalies chromosomiques, les remaniements apparemment équilibrés ne peuvent être considérés comme pathogéniques en absence de déséquilibre prouvé, en particulier lorsqu’ils sont hérités. L’utilisation de puces à ADN pangénomiques a montré dans plusieurs cas l’implication d’une anomalie apparemment équilibrée dans le phénotype observé en retrouvant un déséquilibre inframicroscopique lié ou non au point de cassure initialement décrit.

Nous rapportons une série de 22 patients présentant un autisme et/ou un retard mental et une anomalie chromosomique apparemment équilibrée. Les patients et leurs parents ont été étudiés par SNP-array haute résolution Human-Hap 370 (Illumina). Parmi les remaniements chromosomiques étudiés, 14 étaient de novo, 4 étaient d’origine maternelle et 2 paternelle, dans 2 cas, la transmission parentale est inconnue. Dans 5 cas, l’analyse par SNP-array a montré la présence d’un remaniement jouant un rôle causal dans le phénotype. Tous les microremaniements ont été validés par PCR quantitative ou FISH.

Dans un cas, une inversion paracentrique d’origine maternelle, inv(2) (q14.2;q37.3), s’est révélée déséquilibrée chez l’enfant présentant d’une part une microduplication sur le point de cassure proximal en 2q14.1q14.2 et d’autre part une microdélétion sur le point de cassure distal en 2q37.3. Dans le cas d’une translocation de novo survenue entre le bras court d’un chromosome 4 et les bras courts d’un chromosome acrocentrique, t(4,acro)(p15.3,acro), l’analyse par SNP-array a permis de mettre en évidence une inversion-duplication-deletion associant une microdeletion du télomere 4p et une duplication de la région sous télomérique 4p16.1p16.3 de 4,29 Mb. Dans trois autres cas : une inversion classique du chromosome 2 d’origine maternelle, inv(2)(p11q13), une inversion péricentrique de novo du chromosome 11, inv(11)(p14q23.2) et une translocation réciproque de novo, t(9;11)(q33;q14), le microremaniement est survenu a distance du remaniement initialement décrit, menant respectivement à une monosomie 9p24.2 de 179 Kb, une monosomie 7q22.1 de 4 Mb, et une monosomie 11q14.2q25 de 6,43 Mb.

Nous décrivons l’ensemble des anomalies chromosomiques diagnostiquées et discutons les gènes impliqués dans les remaniements décrits ainsi que leur potentielle implication dans l’autisme ou le retard mental. Notre étude rappelle, par ailleurs, l’importance de caractériser par des études moléculaires les remaniements chromosomiques apparemment équilibrés chez des enfants présentant un trouble neurodéveloppemental.
Ambiguïté sexuelle associée à une mosaïque 45,X/46,X,derY

Hardizi H. (1), Razouki L. (2), Aboulfaraj J. (2), Chokairi O. (1), Chadli E. (2)

(1) Service d'histologie embryologie cytogénétique, Faculté de Médecine et de Pharmacie, Rabat, Maroc
(2) Service de cytogénétique, Institut Pasteur, Casablanca, Maroc

Nous rapportons ici le cas d’un nouveau né présentant un problème de déclaration du sexe à la naissance.

Le patient est le premier enfant d'un couple non consanguin, sans antécédents familiaux particuliers.

L'examen clinique trouve : un faciès turnérien avec un ptérimium colli.

L'examen des organes génitaux externes trouve une ambiguïté sexuelle, les gonades ne sont pas palpables.

L'échographie pelvienne montre la présence d'un utérus de 1,8cm mais pas d'ovaires visibles. Les deux reins sont normaux.

La génitographie visualise une cavité utérine et une trompe gauche bien développées avec une gonade gauche de 1cm de diamètre qui ne ressemble ni à un ovaire ni à un testicule. À droite, la trompe est grêle et on retrouve une bandelette fibreuse.

Une biopsie est faite au niveau des gonades, à gauche, elle retrouve un parenchyme testiculaire, à droite, on retrouve une strie de gonade.

Une étude hormonale réalisée montre des taux élevés de testostérone et DHT (dihydrotestostérone).

Le caryotype réalisé à partir du sang périphérique du patient, trouve une mosaïque 45,X/46,X,+mar. Une étude par biologie moléculaire révèle la présence du gène SRY, ce qui nous laisse penser que le marqueur dérive du chromosome Y.

D'après L. TELVI dans Pediatrics 1999 ;104 ;304-308, les patients qui présentent une mosaïque 45,X/46,XY, ont souvent des Y remaniés, ce qui leur confère une instabilité au cours des divisions cellulaires.

Le caryotype du père n'a pas été réalisé.

Une étude par FISH est prévue afin de préciser le remaniement du chromosome Y.

Le patient est prévu pour une stimulation à l'Androtardyl et une chirurgie masculinisante ultérieures.

Nous comparerons notre observation à celles rapportées dans la littérature.

Nous discuterons également le risque de développer un gonadoblastome que présente ces patient(e) s.
Microdélétions 17p13.3 distales au gène PAFAH1B1 et emportant le gène YWHAE : description de quatre patients


(1) Service d'histologie-embryologie-cytogénétique, Hôpital Jean Verdier - AP-HP, Bondy; Paris 13 University, UFR SMBH, Bobigny
(2) Département de génétique, Hôpital Robert Debré - AP-HP; Inserm, U676, Paris
(3) Laboratoire de Génétique Médicale et Service de génétique clinique, Centre Hospitalier Régional Universitaire, 59000 Lille
(4) Service de Génétique, Hospices Civils de Lyon, Hôpital de l’Hotel Dieu, EA 4171, Université Claude Bernard, 69288 Lyon,

Introduction :
Le syndrome des délétions 17p13.3 (ou syndrome de Miller Dicker, SMD, MIM 247200) associe une lissencéphalie, un retard mental et une dysmorphie faciale. Le phénotype est attribué à l'haploinsuffisance de deux gènes de la région minimale critique du SMD : PAFAH1B1 (anciennement dénommé LIS1) et YWHAE. Alors que les délétions isolées de PAFAH1B1 causent une lissencéphalie, YWHAE est le gène candidat pour le phénotype dysmorphique associé au SMD.

Matériel et Méthode :
Nous décrivons ici le tableau clinique, neuroradiologique et les résultats de cytogénétique moléculaire pour quatre patients porteurs d'une délétion 17p13.3 impliquant YWHAE mais distale à PAFAH1B1.

Résultats :
Les quatre patients présentent un retard mental léger ou modéré et un retard de croissance pré- et/ou post-natal. De plus, les patientes A, B et C présentent une leuco-encéphalopathie, associée à une macrocéphalie (pour les patientes A et C), à une malformation de Chiari de type 1 (pour la patiente A) et à des kystes péri-ventriculaires (pour la patiente C). La patiente B présente une persistance du canal artériel et une hypertension artérielle pulmonaire. La patiente C présente un pied bot unilatéral, et le patient D, un élargissement des espaces de Virchow Robin, une microcornée et un colobome du cristallin et chorioretinien.

L'analyse par CGH-array a révélé une délétion 17p13.3 terminale pour les patientes A et B, et a mis en évidence une délétion 17p13.3 interstitielle de 1,4 Mb pour la patiente C et de 0,5 Mb pour le patient D.

Conclusion :
Ces patients et une revue de la littérature nous permettent de confirmer que les délétions 17p distales à PAFAH1B1 sont associées à un phénomène particulier : un retard mental léger, un retard de croissance modéré, des anomalies de la substance blanche et des malformations comme la malformation de Chiari de type 1 ou le colobome. Nos patients contribuent à la caractérisation clinique et moléculaire des délétions 17p13.3 distales à PAFAH1B1 et soulignent le rôle de la région contenant le gène YWHAE dans le développement du cerveau, de l’œil et dans la croissance somatique.
Caractérisation cytogénétique et moléculaire par FISH et CGH array à propos de deux cas présentant un tableau clinique du syndrome de la délétion 22q13.3

Hannachi H. (1,2), Mougou S. (1,2), Gammoudi A. (1), Dimassi S. (1), Elghezal H. (1,2), Saad A. (1,2)

(1) Département du cytogénétique et de la biologie de la reproduction, CHU Farhat Hached, Sousse, Tunisie
(2) Département Commun du génétique faculté de médecine, Sousse, Tunisie.

Le syndrome de la délétion 22q13.3 (ou le syndrome de Phelan-McDermid, MIM 606232) est caractérisé par une hypotonie néonatale, un retard de croissance, un retard sévère du langage associés à un comportement agressif et autistique ainsi qu’une dysmorphie faciale mineure associant le plus souvent un épicanthus, de grandes oreilles dysplasiques, de longs cils et des sourcils épais, avec parfois une malocclusion dentaire et un hypertélorisme. Ce syndrome peut résulter d’une simple délétion de la région 22q13.3 ou secondaire à une translocation déséquilibrée ou suite à la formation d’un chromosome 22 en anneau.

Nous rapportons, ici, l’étude de deux enfants âgés de 5ans, présentant un retard mental modéré, un retard sévère du langage, une hypotonie et une dysmorphie crânio-faciale mineure. L’exploration cytogénétique des deux patients, par FISH, a mis en évidence un anneau 22 de novo et l’analyse, par CGH-array, a révélé chez eux, une délétion de la région critique minimale 22q13.3 emportant les gènes ARSA, SHANK3, ACR et RABL2B. Cette perte a été vérifiée et localisée par FISH entre les sondes ARSA et 22q tel. L’haplo-insuffisance du gène SHANK3 joue un rôle majeur dans la majorité des anomalies neurologiques observées dans le syndrome de la délétion 22q13.3. La symptomatologie de nos deux patients, en particulier, la déficience intellectuelle, le retard du discours expressif et l’hypotonie nous paraît, alors, fortement en relation avec la perte de ce gène.
Une anomalie de structure du chromosome X, de novo et en mosaïque, à type de duplication du bras long Xq13q22 associée à un retard mental modéré : rôle de l’inactivation de l’X

Bouayed Abdelmoula N. (1), Amouri A. (2), Rebai T. (3)

(1) Laboratoire d’Histologie, Secteur Génétique chromosomique et moléculaire, Faculté de Médecine de Sfax, Tunisie
(2) Laboratoire de Cytogénétique, Institut Pasteur de Tunis, Tunisie

Dans les duplications intrachromosomiques de l’X, on observe habituellement chez la femme une inactivation préférentielle du chromosome dupliqué, ce qui atténue les manifestations phénotypiques du déséquilibre. Cependant, les discordances entre le profil d’inactivation et le phénotype ne sont pas rares et peuvent relever d’une pathologie du point de cassure, de remaniements complexes, d’une variabilité tissulaire du patron d’inactivation ou de pathologies surajoutées.

Dans ce travail, nous rapportons l’observation d’une fille âgée de 19 ans issue d’un mariage non consanguin qui nous a consulté pour prise en charge génétique d’une aménorrhée primaire en relation avec un hypogonadisme hypergonadotrope et d’un infantilisme et chez laquelle l’examen cytogénétique a révélé une formule chromosomique en mosaïque 45,X[7]/46,Xdup(Xq)(q13q22)[16].

A l’interrogatoire, elle présente un quotient intellectuel limite avec notion d’échec scolaire et de relations sociales limitées ainsi que des performances verbales réduites. L’examen clinique a montré les signes d’impubérisme avec une taille de 158 cm pour un poids de 45 kg. A l’inspection, un phénotype turnérien à minima a été noté. L’échographie pelvienne montrait deux bandelettes ovariennes et des OGI de type féminin.

Le caryotype pratiqué sur les lymphocytes sanguins avec marquage des chromosomes en bandes RHG par dénaturation thermique aménagée et analyse de 23 cellules a montré la présence de deux populations cellulaires : une population 45,X (30%) et une population à 46 chromosomes (70%) comportant un chromosome X normal avec présence d’une duplication interstitielle du bras long allant de Xq13 à Xq22. Un caryotype des parents a été alors effectué et n’a montré aucune anomalie.

Le retard mental modéré observé chez notre patiente serait secondaire à une disomie fonctionnelle. Celle ci est due à l’échappement à l’inactivation de certains gènes normalement exprimés en simple dose. En effet, l’inactivation du chromosome X implique un locus situé en Xq13 nommé XIC. Son gène majeur est XIST (X Inactive Specific Transcript) qui code pour un ARN de grande taille, non traduit et qui n’est exprimé qu’à partir de l’X inactivé. Étant donné la localisation du point de cassure proximal en Xq13 chez notre patiente, une perturbation du processus de l’inactivation de l’X serait responsable de la disomie fonctionnelle et par conséquent du phénotype mental anormal. Une étude par FISH du segment dupliqué et du centre d’inactivation de l’X seraient nécessaire pour confirmer ces hypothèses.
Difficultés du conseil génétique au courts des infertilités masculines par translocations réciproques (X;autosome)

Bouayed Abdelmoula N. (1), Amouri A. (2), Rebai T. (3)

(1) Laboratoire d’Histologie, Secteur Génétique chromosomique et moléculaire, Faculté de Médecine de Sfax, Tunisie
(2) Laboratoire de Cytogénétique, Institut Pasteur de Tunis, Tunisie

Le but de ce travail est de rapporter un type de translocations chromosomiques assez rare. Il s’agit des translocations X-autosome s’associant systématiquement à une infertilité masculine dont le pronostic est assez sévère avec souvent une azoospermie et exceptionnellement une oligospermie extrême. La revue de la littérature montre la difficulté du conseil génétique et la nécessité d’une exploration cytogénétique poussée en cas d’OAT.

Il s’agit d’un homme de 36 ans qui consulte pour une infertilité primaire de 5 ans. L’exploration clinique et biologique a révélé une azoospermie avec un simple kyste épididymaire à l’échographie testiculaire, des testicules de taille normale et un taux de FSH normal. Dans les antécédents familiaux, l’arbre généalogique révèle la notion d’hypofertilité chez les parents et les grands parents maternels.

Une étude génétique de cette azoospermie a été menée avec réalisation du caryotype sur lymphocytes sanguins et recherche de microdélétion du chromosome Y.

Une translocation X ;autosome entre le bras court du chromosome X et le bras long du chromosome 9, a été découverte au caryotype : 46,XY,t(X ;9) (p21;q31). Le conseil génétique post-analytique avec estimation des chances de retrouvaille de SPZ à la TESE et des résultats de la prise en charge par ICSI, était difficile.

Quelque soit le point de cassure du chromosome X, un arrêt de la spermatogenèse au stade spermatocyte primaire a été rapporté en cas de t(X ;autosome) induisant des azoospermies suite à une interférence avec l’inactivation normale du chromosome X dans la vésicule sexuelle.
Les hypogonadismes hypo gonadotropes associés à des anomalies chromosomiques : A propos de deux cas

Bouayed Abdelmoula N. (1), Amouri A. (2), Rebai T. (3)

(1) Laboratoire d’Histologie, Secteur Génétique chromosomique et moléculaire, Faculté de Médecine de Sfax, Tunisie
(2) Laboratoire de Cytogénétique, Institut Pasteur de Tunis, Tunisie

Les hypogonadismes hypo gonadotropes congénitaux sont une cause d’insuffisance de développement pubertaire et d’infertilité chez la femme (1/40 000) et chez l’homme (1/8000 NN). Ils résultent de la sécrétion insuffisante de gonadotrophines hypophysaires et le caryotype est d’habitude normal et par conséquent non indiqué. Après le traitement de l’hypogonadisme, une prise en charge par PMA est actuellement proposée. Elle pose le problème de la transmission de la maladie à la descendance et génère une activité croissante de conseil génétique, de surveillance des grossesses induites médicalement et de prise en charge diagnostique et thérapeutique du nouveau-né.

Nous rapportons deux rares cas d’hypogonadisme hypo gonadotrope ayant bénéficié d’une analyse cytogénétique devant une azoospermie pour le 1er cas et une aménorrhée primaire pour le deuxième cas.

Le caryotype a révélé chez le 1er patient une formule chromosomique 47,XXY compatible avec un syndrome de Klinefelter et chez la 2ème patiente une formule chromosomique féminine avec un double variant chromosomique 46,XX,21s+,21s+.

De point de vue génétique l’hypogonadisme hypo gonadotrope se caractérise par une hétérogénéité phénotypique et génétique avec des mutations touchant plusieurs gènes se transmettant selon les 3 modes. La mutation la plus classique touche le gène KALIG-1 (Kallman’s syndrome interval-1) qui se trouve dans la région Xp22.3.

L’association hypogonadisme hypo gonadotrope est anomalies chromosomiques (souvent associées à un hypogonadisme hyper gonadotrope) soulève des questions quant à l’indication du caryotype, surtout en cas de prise en charge par PMA du fait du risque supplémentaire de transmission d’anomalie chromosomique à la descendance.
Délétions du gène CASK et Hypoplasie Ponto-Cérébelleuse


(1) Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP-HP, Paris, France
(2) Laboratoire de Cytogénétique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
(3) Service de Neuropédiatrie, Hôpital Armand-Trousseau, AP-HP, Paris, France
(4) Centre de référence des malformations et maladies congénitales du cervelet, Hôpital Armand-Trousseau, AP-HP, Paris, France

Le gène CASK (Calcium/calmodulin-dependent Serine protein Kinase) en Xp11.4 code pour une protéine kinase de la famille des guanylates kinases membranaires (MAGUK). Cette protéine, fortement exprimée au niveau cérébral joue un rôle au niveau synaptique mais contribue également au développement cérébral et à la régulation de l’expression génique. Elle interagit dans le noyau des neurones avec le facteur de transcription TBR1 qui a pour cible la Reelin, et NR2b, sous-unité 2b du récepteur NMDAR.

Les hypoplasies ponto-cérébelleuses (HPC) sont caractérisées par une insuffisance de développement et/ou une neurodégénérescence précoce du cervelet et du tronc cérébral. En dehors des HPC associées à des anomalies chromosomiques (délétion 5p) ou métaboliques, on distingue cliniquement 5 types dont HPC2 (microcéphalie et choréoathétose liée à des mutations des sous-unités du complexe tRNA splicing endonucléase), le plus fréquent, HPC4, forme sévère d’HPC2, et HPC1 avec atteinte de la corne antérieure de la mœlle. Des délétions et des mutations hétérozygotes inactivatrices de CASK ont été rapportées chez des filles présentant une microcéphalie, une HPC et un retard mental sévère et chez un garçon décédé à 2 semaines de vie.

Nous avons identifié par micro-array oligonucléotidique, deux délétions de la région Xp11.4 impliquant le gène CASK chez deux patientes présentant un tableau d’encéphalopathie avec microcéphalie et HPC et pour lesquelles le séquençage de ce gène n’avait pas mis en évidence de mutation.

La première patiente, âgée de 3 ans, présentait un retard mental avec absence de langage, une marche non acquise, un retard staturo-pondéral à -3.5 DS et une microcéphalie à -6DS. Il existait une dystonie, une atteinte rétinienne, une surdité de perception, une scoliose et des troubles du sommeil. L’analyse par CGH-array (Agilent, 244K) a mis en évidence une délétion d’environ 3 Mb de la région Xp11.4p11.3 emportant la totalité du gène CASK.

La seconde patiente âgée de 14 ans avait une taille à -2DS, un PC à -6DS. Elle se tenait debout avec appui mais ne marchait pas seule et ne parlait pas. Elle présentait une atrophie optique, un nystagmus, un strabisme, une scoliose, une épilepsie. L’analyse par microArray-oligonucléotidique SNP (CytoSNP12, Illumina) a mis en évidence une délétion d’environ 575 kb de la bande Xp11.4 emportant l’exon1 du gène CASK.

En conclusion, la recherche de remaniement chromosomique par micro-array oligonucléotidique doit être proposée chez tout patient présentant un tableau d’hypoplasie ponto-cérébelleuse n’évoquant pas une HPC1, 2 ou 4, avant tout séquençage du gène CASK.
Développement d'une puce dédiée à l'analyse des patients avec albinisme oculocutané

Morice-Picard F. (1,2), Cailley D. (1), Rooryck C. (1,2), Lasseaux E. (1), Lacombe D. (1,2), Arveiler B. (1,2)

(1) Service de Génétique Médicale CHU de Bordeaux, Bordeaux
(2) EA 4137 – Laboratoire de Génétique Humaine Université Victor Segalen Bordeaux 2, Bordeaux

Introduction :
L’albinisme oculocutané (AOC) est une affection autosomique récessive associée à des mutations dans 4 gènes : TYR, OCA2, TYRP1, SLC45A2. Notre laboratoire est le laboratoire national de référence pour le diagnostic moléculaire de l’AOC. 20% des patients restent à ce jour sans diagnostic moléculaire complet, soit parce qu’aucune mutation n’a été trouvée dans les quatre gènes cités précédemment (5%), soit parce qu’une seule mutation a été trouvée dans l’un de ces gènes, la seconde demeurant inconnue (15%). Nous avons récemment montré que 10% des mutations trouvées dans les 4 gènes d’albinisme oculocutané étaient des délétions ou des duplications. Ces microremaniements sont classiquement recherchés par des approches de PCR multiplex semi-quantitative insuffisamment résolutives pour détecter de très petits remaniements localisés soit dans les introns soit dans des éléments de régulation de la transcription qui seraient localisés à distance des séquences transcrites. Nous avons donc développé une puce de CGH-array gène-spécifique.

Matériel et méthodes :
L’étude porte sur l’analyse de 25 patients avec AOC et dont le diagnostic n’a pas été confirmé après analyse des 4 gènes. Nous avons développé une puce de CGH-array gène-spécifique. Cette puce 44K couvre, pour chacun des quatre gènes, l’ensemble de la région transcrite (exons + introns) et 50 kilobases en amont ainsi que 50 kilobases en aval du gène de façon à encadrer les gènes. Ceci est important car on sait que des éléments importants pour la régulation de l’expression des gènes peuvent être situés à distance (plusieurs dizaines de kilobases) des gènes. La densité moyenne est donc de 1 sonde oligonucléotidique tous les 100 paires de bases en moyenne le long des 4 gènes. Le reste des 44000 sondes est réparti sur l’ensemble du génome et sert de contrôles.

Résultats et Conclusions :
Nous avons d’ores et déjà caractérisé deux délétions et deux duplications internes au gène OCA2 grâce à cette approche. Les résultats concernant l’ensemble des 25 patients seront présentés. Les retombées attendues de l’utilisation de cette puce à haute densité ciblée sur les 4 gènes OCA1-4 sont une optimisation de la recherche de mutations au sein des 4 gènes connus avec pour conséquence l’amélioration du diagnostic et du conseil génétique pouvant être offert aux patients et leurs familles.

Sur le plan fondamental, la mise en évidence de microréarrangements intragéniques pointera des régions des gènes importantes pour leur expression, telles que des éléments régulateurs qui peuvent se trouver dans les introns des gènes ou à des distances de plusieurs dizaines de kilobases des séquences transcrites en ARN.
Un nouveau cas de délétion 2q36.3 identifiée en micro-array oligonucléotidique SNP


(1) Service de Génétique et Embryologie Médicales, Hôpital Armand-Trousseau, AP- HP, Paris, France
(2) Laboratoire de Cytogénétique, Hôpital Pitié-Salpêtrière, AP- HP, Paris, France
(3) Service de Neuropédiatrie, Hôpital Armand-Trousseau, AP- HP, Paris, France
(4) Centre de référence des malformations et maladies congénitales du cervelet, Hôpital Armand-Trousseau, AP-HP, Paris, France.

Les délétions interstitielles du bras long du chromosome 2 emportant la bande 2q36 sont des remaniements chromosomiques rares et seule une dizaine de patients a été rapportée dans la littérature. Pour la plupart de ces observations, les remaniements ont été détectés en cytogénétique conventionnelle et n'ont pas été caractérisés en cytogénétique moléculaire. Une observation récente rapporte le cas d'une patiente présentant un retard mental sévère, une dysmorphie faciale caractéristique et un syndrome malformatif associant des anomalies squelettiques à des kystes rénaux multiples. Initialement identifiée en cytogénétique conventionnelle, la délétion 2q36 est caractérisée en CGH-array. Il s'agit d'une délétion interstitielle de la bande 2q36.2 à 2q36.3 d'environ 5.6Mb.

Nous rapportons une seconde observation de délétion 2q36.3 d'environ 0.7Mb identifiée en micro-array oligonucléotidique SNP (CytoSNP12, Illumina®).

Un retard de développement sans notion de régression à l'âge de 3 ans motive la consultation de génétique. Il s'agissait de la première enfant d'une couple non apparenté et bien portant. La grossesse s'était déroulée normalement et l'enfant est née à 40SA+1j avec des mensurations normales. Vers l'âge de 9 mois, la maman a noté qu'il s'agissait d'une enfant peu active. La marche a été acquise à 2 ans. Le caryotype standard était normal de même que les échographies cardiaques et rénales. L'IRM cérébrale a mis en évidence un petit kyste épiphysaire avec corps calleux un peu court et une discrète atrophie du vermis supérieur. Il a été noté une incisive médiane surnuméraire. L'étude des principaux gènes d'holoprosencéphalie était négative.

Le développement s'est fait avec un retard global un retard de langage très sévère. A l'âge de 11ans, l'enfant a présenté des troubles du comportement avec agitation et stéréotypies. Il existait des particularités morphologiques avec un enfoncement orbitaire, des joues larges, un front étroit avec creux bi frontaux, une 5ème incisive supérieure, des cheveux fins poussant mal et une petite clinodactylie du 5ème doigt.

La délétion emporte ou interrompt 4 gènes (PID1, DNER, TRIP12 et FBXO36) fortement exprimés dans le cerveau et durant le développement foetal pour les trois premiers. Il s'agit d'ailleurs des 3 gènes inclus dans la zone commune délétée chez notre patiente et chez celle décrite récemment dans la littérature.

Dysmorphie faciale, retard mental et troubles du comportement semblent similaires chez les deux patientes. La différence de taille entre ces deux délétions explique vraisemblablement l’absence d’anomalie viscérale associée chez notre patiente. Cette nouvelle observation contribue à établir un corrélation phénotype-génotype dans la délétion 2q36.
La délétion intertitielle Xp22.3: Une anomalie génétique cliniquement reconnaissable identifiée par CGH array

Mougou-Zerelli S., Ben Khélifa H., Hannechi H., Dimassi S., Saad E., Hatem A.

Service de Cytogénétique et Biologie de la reproduction, CHU Farhat Hached, Sousse, Tunisie

L’ichtyose liée à l’X est une maladie génétique affectant la peau secondaire à un déficit de l’enzyme stéroïde sulfatase (STS). Elle est souvent associée à une microdélétion récurrente en Xp22.31.

La plupart des patients avec une délétion isolée du gène STS présentent sur le plan clinique une ichtyose isolée. Cependant, si elle est associée à d’autres signes cliniques tel que, le retard mental, un syndrome de gènes contigus peut être suggéré. Un gène candidat du retard mental serait le gène VCX-A.

Nous rapportons, ici le cas d’un garçon âgé de 14 ans présentant un retard mental modéré, une dysmorphie faciale, une épilepsie et une ichtyose. Le caryotype en bande R est revenu normal.

L’hybridation génomique comparative (CGH array) avec une résolution de 44K a montré une délétion interstitielle de Xp22.3 de 1,32 Mo (A-14-P139110 à A-14-P125042). Cette délétion emporte les gènes STS, VCX (A, B, 3A et 3B) et HDHD1A.

Il a été suggéré que le gène VCX-A est suffisant pour maintenir un développement mental normal. Ce qui est concordant avec nos résultats démontrant un dysfonctionnement du gène VCXA chez un patient présentant une ichtyose associée à un retard mental.
Monosomie 1p36 : à propos de 12 observations


(1) CHU Timone-enfants-Laboratoire de Génétique Chromosomique-Marseille
(2) CHU Nice Hôpital l'Archet-Service de Génétique Médicale-Nice
(3) CHU Timone-enfants-Unité de Génétique Clinique-Marseille

Nous présentons 12 observations de microdélétion 1p36 colligés au Centre de Référence Anomalies du Développement et Syndromes Dysmorphiques Marseille-Nice. La microdélétion 1p36 fait partie des remaniements chromosomiques subtélomériques les plus fréquents avec une fréquence estimée à 1/5000 naissances. Le phénotype lié à ce remaniement est suffisamment caractéristique pour être évoqué cliniquement. Il comprend une hypotonie néonatale avec un retard modéré des acquisitions motrices, une épilepsie à début précoce ou tardif, une dysmorphie faciale associant une microcéphalie avec une fontanelle antérieure large ou un retard à sa fermeture, une brachycéphalie, une hypoplasie médio faciale, une énophtalmie avec des fentes palpébrales étroites et des sourcils horizontaux, une racine du nez plate, des oreilles petites et une microstomie. Des anomalies des extrémités peuvent être observées (clinodactylie V° doigt). Des malformations sont fréquentes : fente labio-palatine, cardiaques, cardiomypathie, anomalies cérébrales (dilatation ventriculaire avec atrophie cérébrale), atteinte ophtalmologique et sensorielle. L'évolution est marquée par un retard mental sévère avec un langage pauvre.

Les anomalies cytogénétiques retrouvées dans notre série sont comparables aux données de la littérature. Dans 7 cas (59%), la délétion est terminale et survenue de novo, identifiable en FISH avec les sondes subtélomériques commerciales. Dans 4 cas (33%), la délétion est interstitielle et l'une d'entre elle est complexe (double délétion). Un remaniement complexe (8%) est retrouvé. Nous n'avons pas observé de cas liés la malségrégation d’un remaniement chromosomique parental. Nous avons établi la taille de la majorité de nos microdélétions par CGH microarray (plateforme Agilent 180k) et discuterons de la région minimale critique de ce syndrome qui fait l’objet de controverse.
Nous rapportons ici le cas d’une petite fille de 8 ans présentant un retard mental profond, une microcéphalie à –4DS et une atrophie ponto-cérébelleuse. Le caryotype standard est normal ; l’analyse en CGH-array (Whole genome Tiling NimbleGen :Hg18,72K) montre une délétion de 359 Kb en Xp11.4 emportant la quasi-totalité du gène CASK. Cette délétion a été confirmée par une technique de PCR quantitative.

Le retard mental affecte 2 à 3% de la population avec une prédominance chez les garçons ; parmi tous les gènes potentiellement responsables portés par le chromosome X, on a identifié le gène CASK. Il code pour une protéine de la famille des kinases, largement présente dans les différentes régions du cerveau, ainsi que dans les neurones et les synapses et qui intervient dans le développement cérébral. Les mutations de CASK ainsi que ses délétions affectent aussi bien les filles que les garçons, avec un phénotype plus grave chez le garçon.

La majorité des délétions décrites dans cette région emportent plusieurs gènes ; dans notre cas et dans une autre observation seul le gène CASK est concerné par la délétion avec la même association clinique. Ce gène est donc un bon candidat pour ce phénotype.
Syndrome de Waardenburg–Shah et microdélétion 13q21.33q22.3

Popovici C. (1), Sigaudy S. (2), Missirian C. (1), Martinez J. (1), Moncla A. (1)

(1) Laboratoire de Génétique Chromosomique, Département de Génétique Médicale, Hôpital de la Timone Enfants, Assistance Publique – Hôpitaux de Marseille
(2) Unité de Génétique Clinique, Département de Génétique Médicale, Hôpital de la Timone Enfants, Assistance Publique – Hôpitaux de Marseille

Le syndrome de Waardenburg-Shah (syndrome de Waardenburg de type IV) est un syndrome associant : 1) des anomalies de pigmentation de la peau, des cheveux et des yeux, 2) une surdité neuro-sensorielle et 3) une maladie de Hirschsprung. Il est lié à des mutations hétéro ou homozygotes du gène \textit{EDNRB}, gène localisé en 13q22.3.

Nous rapportons un patient avec un syndrome de Waardenburg qui, par l’association de plusieurs réarrangements, pose des problèmes de diagnostic. Le patient, âgé de 16 ans, présente une hétérochromie irienne, une surdité modérée bilatérale, une bicuspidie aortique, une petite taille et des difficultés scolaires. Un phénotype évocateur du syndrome de Waardenburg a été identifié chez la mère et la grand-mère maternelle.

L’examen cytogénétique conventionnel a mis en évidence chez le cas index la présence d’une inversion pericentrique du chromosome 4 [46,XY,inv(4)(p16.3q12)]. Bien que des inversions du chromosome 4 associées à des troubles de la pigmentation et à un retard mental aient été décrites dans la littérature, l’hypothèse de l’implication de ce réarrangement chromosomique chez le patient a été réfutée. En effet, l’étude familiale montre que l’inversion était héritée du côté paternel.

La recherche d’une autre cause de la surdité chez ce patient par étude moléculaires des gènes de la connexine 26 et 30 et du gène \textit{PAX3} n’a pas mis en évidence de mutations.

L’hybridation génomique comparative sur microréseau d’ADN a montré la présence d’une délétion 13q21.33-q22.3 d’environ 9,8 Mb. Cette microdélétion est survenue de novo et couvre 21 gènes dont le gène \textit{EDNRB}. De rares délétions du bras long du chromosome 13 associées au syndrome de Waardenburg ont été décrites dans la littérature. Le phénotype associé à ces réarrangements a une expressivité variable, un ou l’autre des éléments de la triade caractérisant ce syndrome pouvant être absent.

La coexistence de plusieurs événements mutationnels dans une famille peut poser des problèmes de diagnostic et de conseil génétique. Dans la famille que nous présentons trois événements génétiques sont retrouvés: un syndrome de Waardenburg identifié dans la branche maternelle, une inversion péricentrique du chromosome 4 hérédité du père et une microdélétion du chromosome 13 de novo couvrant le gène \textit{EDNRB}. Bien que la responsabilité de la microdélétion dans l’apparition du phénotype chez le cas index ne puisse pas être mise en doute, l’influence de facteurs maternels restera uniquement une hypothèse tant que le gène responsable du phénotype maternel ne sera pas identifié.
Le syndrome Silver-Russell (SRS) est un syndrome d’origine hétérogène qui associe un retard de croissance pré et postnatal, une asymétrie corporelle, une macrocéphalie relative avec une dysmorphie faciale. Dans 50% des cas, des anomalies génétiques sont décelées : plus de 38% des patients ont une hypométhylation du locus IGF2/H19 de la région 11p15 soumise à empreinte, 10% ont une disomie monoparentale d’origine maternelle du chromosome 7. Dans quelques rares cas, des anomalies cytogénétiques ont été rapportées. Il reste cependant 50% des patients sans anomalie décelable à ce jour.

Nous avons étudié une vingtaine de patients sans étiologie identifiable avec la technique de CGH array sur une plateforme Agilent (puces de résolution 180k) qui nous a conduit à mettre en évidence une microdélétion de la région 12q14.

La microdélétion 12q14 se caractérise par un retard de croissance, un retard mental et une ostéopoikilosis. La délétion de notre patiente est la plus petite délétion décrite à ce jour et emporte uniquement le gène \textit{HMGA2} (high mobility group AT-hook 2).

Les deux patientes décrites dans la littérature ont une délétion emportant \textit{HMGA2} mais également \textit{LEMD3} (LEM domain-containing protein 3). L’haploinsuffisance du gène \textit{LEMD3} et les mutations ponctuelles sont responsables de l’ostéopoikilosis.

Notre observation apporte un argument extrêmement robuste pour démontrer que l’haploinsuffisance du gène \textit{HMGA2} est responsable du retard de croissance chez l’homme.

Un modèle murin de ce gène montre également l’altération de la croissance et l’apparition d’un phénotype pygmée.

Nous allons rechercher chez des patients Silver Russel des mutations ponctuelles de ce gène qui apporteront la preuve définitive de son implication.

En conclusion, il nous semble qu’en l’absence des anomalies moléculaires fréquentes à l’origine de ce syndrome, il est nécessaire de proposer à ces patients un caryotype moléculaire.
Certaines anomalies chromosomiques n’ont pas de conséquence phénotypique et sont appelées hétéromorphismes. Les hétéromorphismes sont communément appelés variants ou polymorphismes. Les variants les plus fréquents sont constitués d’hétérochromatine (Yqs, 9qh+, 9ph+…) ou de séquences répétitives et/ou d’ARNr (satellites des bras courts des chromosomes acrocentriques…) et sont couramment détectés en cytogénétique de routine.

5 variants, beaucoup plus rares, constitués d’euchromatine (EVs) ont été décrits en 8p23.1, 9p12, 9q12, 15q11.2 et 16p11.2. Ils sont la conséquence d’un excès de séquences répétitives non codantes.

Nous rapportons deux observations de variants euchromatiques en 9p12 et en 16p11.2.

La première observation concerne un homme de 54 ans, de phénotype normal, dont le caryotype sanguin avait été prescrit dans le cadre d’une enquête familiale : sa fille, âgée de 29 ans avait eu un caryotype pour un bilan de fausses couches à répétition. Un excès de matériel non identifié sur les bras courts d’un chromosome 16, prenant le marquage avec la sonde wcp16, avait conduit à l’enquête familiale. Le caryotype sanguin du père, réalisé par culture des lymphocytes stimulés par la PHA selon les techniques standards (bandes G avec une résolution de 550 bandes), a montré qu’il était porteur de la même « anomalie » sur un chromosome 16 qui était en fait un variant en 16p11.2, sans conséquence phénotypique, et notamment sans rapport avec les fausses couches de la fille.

La deuxième observation concerne une femme de 31 ans, 4ème geste, 3ème pare qui a eu une amniocentèse à 17 SA pour clarté nucale à 2,5 mm pour une LCC à 55 mm. L’analyse chromosomique réalisée sur des cultures d’amniocytes in situ selon les techniques standards (bandes G avec une résolution de 400 à 500 bandes) a montré un excès de matériel sur les bras courts d’un chromosome 9, prenant le marquage avec la sonde wcp9. Il s’agit un variant euchromatique 9p12v qui a été confirmé par le bac RP11-15E1 spécifique de ce locus. Nous avons rassuré la patiente sur le bon pronostic de ce variant et l’absence de lien avec la clarté nucale. La grossesse est en cours.

Ces deux observations soulignent l’importance pour le cytogénéticien d’avoir à l’esprit l’existence de variants rares lors de l’interprétation et la validation du caryotype. En effet, leur méconnaissance peut conduire à un conseil génétique inadapté et à des explorations complémentaires coûteuses et inutiles.
Délétions interstitielles proximales 10p11-p12, un nouveau locus de retard mental syndromique


(1) Hôpital Henri Mondor - Service de Biochimie-Génétique - Créteil
(2) Hôpital Armand-Trousseau - Service de Génétique et d’Embryologie médicales - Paris
(3) Hôpital Jeanne de Flandre CHRU de Lille - Service de Génétique Médicale - Lille
(4) Hôpital Necker - Service de Génétique - Paris

Introduction :

Nous décrivons ici trois cas de délétion 10p interstitielle proximale, 10p11-p12.

Matériel et méthode :
Les microremaniements chromosomiques ont été identifiés par caryotype, CGH-array Agilent 44K, 105K et 244K et confirmés par FISH.

Résultats :
Chez le premier patient, la découverte en période prénatale d’une dilatation des ventricules cérébraux et d’une CIV a entraîné la réalisation d’un caryotype. Une monosomie 10p12-p13 excluant le locus DGS2 (en FISH) a été identifiée, de novo, à 38SA, rendant le conseil génétique difficile. En période postnatale, par CGH-array, les bornes de cette délétion ont été précisées en 10p21.31-p11.23. L’enfant âgé de 3 ans et 9 mois présente une dysmorphie, un retard psychomoteur avec troubles du comportement, ne marche pas et n’a pas de langage. Il a également une microcéphalie, une petite taille, une CIV, un colobome chorio-rétinien, une surdité mixte et une cryptorchidie bilatérale. L’IRM cérébrale retrouve la ventriculomégalie, mais aussi une hypoplasie du corps calleux, cérébelleuse et des voies optiques antérieures.


Conclusion
Nous rapportons les premiers cas de délétion 10p11-p12 chez trois patients avec un retard mental sévère et des troubles du comportement (3/3), une surdité et des anomalies cardiaques (2/3). Des malformations cérébrales : dilatation ventriculaire, agénésie du corps calleux et hypoplasie cérébelleuse ont également été identifiés (2/3).

Les délétions, comprises entre 6,6Mb et 10,6Mb, ont un intervalle commun de 1,7Mb en 10p11.23-p12.1 comprenant 11 gènes. Il sera discuté de la présence de gène(s) d’intérêt et de leur corrélation génotype/phénotype.
Apport de la CGH-Array dans la caractérisation de remaniements chromosomiques complexes apparemment équilibrés à phénotype anormal : à propos de deux cas


(1) Laboratoire de Cytogénétique, CHU Le Bocage, Dijon
(2) Centre de Génétique Clinique, Hôpital d’Enfants, CHU Dijon

Nous rapportons deux observations de remaniements de structure complexes, apparemment équilibrés à phénotype anormal pour lesquelles l'étude en CGH-Array a permis la mise en évidence de déséquilibres submicroscopiques.

Le premier patient est un homme de 32 ans pour lequel a été réalisé à l’âge de 3 ans un caryotype sanguin en raison d’un retard des acquisitions associé à une dysmorphie modérée (macrocéphalie, fentes palpébrales antimongoloïdes). Des remaniements de structure complexes apparemment équilibrés entre les chromosomes 3p, 4q, 10q, 12q et 22p ont alors été mis en évidence et confirmés par une étude FISH utilisant des sondes de peinture. Les caryotypes sanguins parentaux se sont révélés normaux. Une étude en CGH-Array (Oligo-Array 4x44K, résolution 43 kb, Agilent®) a montré les anomalies suivantes :
- une délétion de 109 kb de la région 3p24.2, incluant 2 gènes, confirmée par q-PCR,
- trois délétions dans la région 12q14.1, respectivement de 1,3 Mb (1 gène), 1 Mb (absence de gène) et 735 kb (5 gènes), confirmées en FISH à l’aide de sondes BACs,
- et une délétion 12q14.3q15 de 2,1Mb, comportant 9 gènes, confirmée également par FISH.

Le second patient est une jeune fille de 14 ans présentant un retard psychomoteur associé à une dysmorphie modérée et à une scoliose. Le caryotype sanguin réalisé en période néonatale avait mis en évidence des remaniements de structure complexes apparemment équilibrés impliquant les chromosomes 4p, 4q, 13q, 14q, 15q et 21q, survenus de novo et confirmés au caryotype spectral. Une hybridation génomique comparative sur métaphases n’avait pas révélé de déséquilibre. L’étude en CGH-Array (Oligo-Array 105K, résolution 22 kb, Agilent®) a finalement montré trois délétions submicroscopiques confirmées secondairement à l’étude FISH utilisant des sondes BACs:
- une délétion de la région 4p16.1, de 862 kb (3 gènes),
- une délétion 4q33q34.1 de 2,6 Mb (5 gènes) et enfin
- une délétion 4q34.3q35.1 de 1 Mb (1 gène).

Ces deux observations ainsi que l’analyse de la littérature confirment l’importance de l’étude en CGH-Array des remaniements de structure complexes apparemment équilibrés à phénotype anormal. Ces remaniements s’avèrent souvent plus complexes que ne le laisse présager la cytogénétique conventionnelle, avec la mise en évidence de microremaniements aux points de cassure mais aussi en dehors des points de cassure.
Apport des puces SNP dans la détection et la caractérisation des anomalies moléculaires et chromosomiques responsables du syndrome de Beckwith-Wiedemann


(1) GH Pitié-Salpêtrière, APHP – Centre de Génétique Moléculaire et Chromosomique – Plateau Mutualisé de Génétique Constitutionnelle du GHU Est – Paris
(2) Hôpital Armand Trousseau, APHP – Service de Génétique et Embryologie Médicale - Plateau Mutualisé de Génétique Constitutionnelle du GHU Est – Paris
(3) Hôpital Armand Trousseau, APHP – Service d’Explorations Fonctionnelles Endocrinienes – Paris
(4) Université Paris 6, UPMC, site Pitié – P3S – Paris

Le syndrome de Beckwith-Wiedemann (BWS) est caractérisé par une avance staturale anté et post-natale, une macroglossie, une viscéromégalie et une prédisposition aux tumeurs embryonnaires, principalement rénales. Il est lié à la dérégulation de l’expression de gènes soumis à empreinte situés dans la région 11p15. Cette dérégulation peut résulter d’anomalies de méthylation d’un des 2 centres d’empreinte de la région (70% des cas), de disomies uniparentales paternelles (upd) segmentaires en mosaïque (20% des cas), de microduplications d’origine paternelle (<2% des cas) et de mutations du gène CDKN1C sur l’allèle maternel (5% des cas).

Le diagnostic repose principalement sur des techniques moléculaires d’étude de méthylation : Southern Blot, qPCR méthyl-spécifique, MLPA... Les principales limites de ces techniques sont leur sensibilité à la détection des mosaïques faibles et leur impossibilité à bien caractériser les disomies et duplications (taille, point de cassure, taux de mosaïque).

Nous avons voulu évaluer l’apport des puces SNP dans la détection et la caractérisation des upd et des microduplications liées au BWS. Les puces SNP, comme la CGH array permettent de détecter les CNV donc les microduplications mais détectent également les pertes d’hétérozygotie donc les upd. Pour ce travail nous avons utilisé les puces pangénomiques Illumina CytoSNP-12 contenant 300000 marqueurs.

Quatre upd connues ont été testées : toutes ont été détectées, le taux de mosaïque et la taille du segment disomique ont pu être évalués. L’analyse d’un patient sur ADN extrait de sang et ADN extrait de langue a détecté une variabilité du taux de mosaïque selon les tissus. De plus, l’analyse de deux ADN dont le résultat en qPCR était limite a confirmé dans les 2 cas la présence d’une upd sans ambiguïté démontrant une meilleure sensibilité.

Trois duplications ont pu être caractérisées : une duplication en tandem de petite taille (380Kb) de détection difficile en FISH, une duplication associée à une délétion résultant d’une aneusomie de recombinaison d’une inversion péricentrique et en fin une duplication résultant d’une malségrégation d’une translocation réciproque.

Au final les puces SNP présente un réel intérêt diagnostique dans le BWS. Elles permettent de détecter les upd de façon plus sensible que la qPCR, détecter les duplications de façon plus sensible que la FISH et évaluer la taille et le taux de mosaïque des anomalies. Elles ne permettent par contre pas de détecter les anomalies de méthylation. Elles sont donc utiles en complément (et non en remplacement) des techniques classiques d’étude de méthylation.
Caractérisation par puce ADN de 4 délétions constitutionnelles 5q interstitielles emportant le gène APC


(1) Groupe Hospitalier Pitié-Salpêtrière, APHP - Département de Génétique - Plateau Mutualisé de Génétique Constitutionnelle du GHU Est - Paris
(2) Hôpital Armand Trousseau, APHP – Service de Génétique et Embryologie Médicales - Plateau Mutualisé de Génétique Constitutionnelle du GHU Est – Paris
(3) Hôpital Necker-Enfants Malades, APHP – Service d’Histologie, Embryologie, Cytogénétique – Paris
(4) Hôpital Jean Verdier, APHP – Service d’Histologie, Embryologie, Cytogénétique - Bondy

Le gène APC (adenomatous polyposis coli) situé en 5q22.2 est un gène suppresseur de tumeur muté à l’état somatique dans la majorité des cancers coliques. Les mutations hétérozygotes de ce gène à l’état constitutionnel sont, quant à elles, responsables de la polyposis adénomateuse familiale (FAP), maladie autosomique dominante prédisposant au cancer.

Nous avons identifié 4 cas index (1 cas familial, 3 cas sporadiques) présentant une délétion de la région d’APC détectée soit par MLPA, lorsque la porte d’entrée était une FAP, soit sur le caryotype lorsque la porte d’entrée était un retard des acquisitions.

Les 4 délétions ont été caractérisées par puce SNP Illumina CytoSNP-12 contenant 300000 marqueurs : la taille de la délétion varie de 11 à 20Mb et aucun point de cassure n’est récurrent chez les patients analysés.

Sur le plan clinique les patients présentent tous un retard mental et une dysmorphie mais ce retard est variable allant de léger à sévère et la dysmorphie ne semble pas caractéristique. Le cas familial (mère et frère également atteints) est une femme âgée de 33 ans. Elle présente une FAP ayant nécessité une colectomie totale associée à des tumeurs desmoïdes récidivantes. Les 3 autres patients n’ont pas été explorés sur le plan colique, car âgés de moins de 12 ans (risque faible) mais devraient également développer une polypose dans l’adolescence.

Les autres cas décrits dans la littérature d’anomalies 5q interstitielles avec délétion prouvée d’APC (7 patients) présentaient également un retard mental et une polypose. D’autres signes sont également décrits mais semblent inconstants (fente palatine, hypoplasie musculaire).

Au final, les délétions constitutionnelles 5q de la région du gène APC sont responsables d’un syndrome associant polypose colique et retard mental. Cette atteinte nécessite obligatoirement une surveillance oncologique dès le début de l’adolescence et une colectomie totale à l’âge adulte. Il existe par ailleurs une variabilité phénotypique portant sur la sévérité du retard et les signes associés résultant de la non récurrence des points de cassure de la délétion.
Duplication 22q11.21-q11.23 associée à un colobome isolé


(1) Laboratoire de Cytogénétique, CHU Charles Nicolle, Rouen
(2) Unité de Génétique Clinique, CHU Charles Nicolle, Rouen
(3) Unité de Génétique Moléculaire, CHU Charles Nicolle, Rouen

L’incidence du colobome est estimée en France à 1,4 pour 10 000 naissances. Plusieurs gènes ont été décrits associés au colobome mais aucun n’a été rapporté sur le chromosome 22.

Nous rapportons ici l’observation d’une patiente âgée de un an présentant un colobome irien et chorio-rétinien gauche, un discret épicanthis bilatéral et un développement psychomoteur normal pour l’âge. L’examen ophtalmologique de ses parents est sans particularité.

L’analyse du caryotype en bandes RBG et GTG à la résolution de 550 bandes par lot haploïde associée à des techniques de FISH à l’aide de sonde de peinture de chromosome 22 révèle un remaniement du bras long d’un chromosome 22 évoquant une duplication en amont de la région 22q12. Les caryotype parentaux sont normaux. La CGH-Array (Agilent 105 K) confirme une duplication en 22q11.21-q11.23 de 2,83 Mb (chr22 : 20'138'750 pb - 22'973'264 pb, build 36.3) et révèle une duplication de 1,62 Mb en Xp22.31. Ces remaniements sont confirmés par techniques de FISH qui permettent de démontrer la transmission maternelle de la duplication observée en Xp22.31.

A notre connaissance, seuls deux patients présentant un colobome associé à une duplication de la région 22q11.2 ont été décrits à ce jour et un seul de ces remaniements a été borné par CGH-Array. Il s’agit d’une duplication en 22q11.21-q11.23 de 2,01 Mb (chr22 : 20128505 pb – 22143441pb, build 36.3). Il existe une région de 2 Mb commune à ce dernier cas et au notre. Cette région comprend 24 gènes dont la pathogénicité sera discutée au regard de la littérature. Par ailleurs, la duplication en Xp22.31 reste de signification indéterminée, mais on ne peut exclure un rôle de facteur modificateur favorisant la survenue du colobome.
Facial dysmorphism without psychomotor development failure in a case of chromosome (1;3) translocation: two years and half clinical follow up results

Alao MJ. (1,2), Laleye A. (2), Lalya F. (1), Gangbo FA. (2), Adjagba MO. (2), Ayivi B. (1), Darboux RB. (2)

(1) Unité de Pédiatrie et Génétique Médicale, FSS/UAC, Cotonou, Bénin
(2) Unité de Biologie Humaine, Laboratoire de cytogénétique, FSS/UAC, Cotonou, Bénin

The patient (T.O.) was seen in our medical genetics consultation for craniofacial dysmorphism noticed at birth. She was a product of normal pregnancy of non consanguineous parents. Delivery was unremarkable after a nine months gestation without ultrasonographic abnormalities. Birth weight and height was respectively 3.100 kg and 51 cm. The OFC was not recorded. Familial history was normal.

Physical examination at 3 months old disclosed facial dysmorphism with telecanthus, blepharophymosis, microphthalmia, up slanting palpebrale fissures, flat nasal bridge, maxillary hypoplasia and a relative macrostomy (Fig. 1). Abdomen bore umbilical hernia. Psychomotor development was good with neck control, intentional smile and normal audition and vision.

Cytogenetics revealed a chromosome 1; 3 translocation on standard karyotype analysis (Fig. 2) confirmed by FISH (Fig. 3).

CGH microarray was done and found 3q23 microdeletion (Fig. 4) Parents’ karyotypes were normal either at standard karyotyping, FISH analysis or CGH microarray.

During 2 years and half following up, this infant growth normally. Surprisingly, her psychomotor development seems to be in advance. Indeed, she sat at 5 months, crawled at 6 months, stanced at 8 months and walk at 10 months. She was clean by day and by night at 30 months. So was developed the language and mental performance. Internal malformations frequently observed in such disease have been ruled out with no anomaly at heart, kidney and cerebral ultrasonography.
Délétion complète des bras courts d'un chromosome 18 chez un homme hypofertile

Lochu P. (1), Chabrand S. (2), Keppi B. (3), Savareux L. (2), Francannet C. (4)

(1) Laboratoire de cytogénétique, GEN-BIO, 62 rue Bonnabaud, 63965 Clermont-Ferrand cedex 9, France
(2) Clinique de la Châtaigneraie, rue de la Châtaigneraie, 63110 Beaumont, France
(3) Laboratoire d'AMP, GEN-BIO, clinique de Châtaigneraie, 63110 Beaumont, France
(4) Service de Génétique médicale, CHU Estaing, 1 place Lucy Aubrac, Clermont-Ferrand, France

Le chromosome 18 est souvent impliqué dans les remaniements chromosomiques. La délétion des bras courts du chromosome 18, première délétion décrite dans l’espèce humaine en 1963 par Jean De Grouchy, est bien documentée. Elle est le plus souvent homogène et son phénotype associe une dysmorphie variable (petite taille, visage rond, oreilles larges et décollées, anomalies dentaires), associée parfois à des malformations céphaliques. Les autres malformations (cardiaques, oculaires, squelettiques) sont plus rares. Le retard mental est variable, le QI étant compris entre 25 et 75.

Nous rapportons une observation rare de monosomie 18p complète en mosaïque chez un homme bien portant âgé de 35 ans, marié et intellectuellement normal, architecte de profession.

Cet homme ayant une oligospermie et une tératospermie a bénéficié d’un caryotype sanguin à l’occasion d’une prise en charge en AMP (assistance médicale à la procréation).

Le caryotype réalisé il y a 16 mois par culture des lymphocytes stimulés par la PHA selon les techniques standards (bandes G avec une résolution de 550 bandes) a montré un chromosome 18 remanié dans 66 % des métaphases observées. Ce chromosome 18 anormal est délété pour la totalité des bras courts qui sont remplacés par des bras courts d’un chromosome acrocentrique. La sonde de peinture du chromosome 18 et la sonde télomérique 18p ont permis de confirmer l’absence de bras courts de 18 sur un autre chromosome. Les bras courts d’acrocentrique sur le 18 remanié ont été confirmé par des bandes NOR’s et des bandes C.

Après une consultation spécialisée de conseil génétique, ce couple a été pris en charge en AMP. Son épouse est actuellement enceinte à l’issue de la deuxième tentative de FIV/ICSI après transfert de deux embryons à J2. Ce couple a choisi de bénéficier d’une amniocentèse plutôt que d’une ponction de trophoblaste, compte tenu de la difficulté à obtenir une grossesse. Une technique de FISH interphasique avant culture avec une sonde télomérique des bras courts du chromosome 18 a permis de rassurer rapidement ce couple avant l’obtention de métaphases par cultures des lymphocytes.

Nous avons fait le lien entre la délétion 18 p en mosaïque et l’infertilité du patient. Les cas de monosomie 18p complète en mosaïque sont exceptionnels. Les cas décrits, surtout chez des enfants, font état d’un retard mental. Quelques cas d’adultes sans anomalie intellectuelle ont été décrits mais avec une délétion partielle des bras courts. Nous proposons une revue de la littérature de ces cas.
Délétion 3q27.3q29 associée à un syndrome polymalformatif, des troubles cognitifs, une hypogammaglobulinémie et une anémie réfractaire


(1) Laboratoire de Cytogénétique, CHU Charles Nicolle, Rouen
(2) Laboratoire d’Immunologie Biologique, CHU Charles Nicolle, Rouen
(3) Unité de Génétique Clinique, CHU Charles Nicolle, Rouen
(4) Laboratoire de Génétique Oncologique, Centre Henri Becquerel, Rouen

La délétion 3q29 correspond à un syndrome causé par une délétion récurrente de 1,6 Mb dans la région subtélomérique de bras long de chromosome 3. Bien que la taille de la délétion soit constante, le phénotype associe de façon variable un retard de développement, un comportement autistique, des anomalies squelettiques, une dysmorphie faciale avec un visage long, un nez allongé, un philtrum court et de grandes oreilles. Un mécanisme de recombinaison homologue non allélique a été proposé à l’origine de la recrudescence de cette délétion.

La délétion 3q27.3q29 est plus rare et à notre connaissance, deux cas ont été décrits avec comme point commun, un retard de développement, une scoliose et des troubles du comportement.

Nous rapportons un nouveau cas de délétion 3q27.3q29 de novo. Il s’agit d’une patiente âgée de 29 ans qui présente un retard mental modéré associé à des troubles du comportement, une dysmorphie faciale, une cyphose cervicale et dorsale, des pieds plats valgus, une surdité bilatérale, un déficit immunitaire à type d’hypogammaglobulinémie et une anémie réfractaire.

La délétion 3q27.3q29 est visible sur le caryotype en bandes RBG et GTG à la résolution de 550 bandes par lot haploïde et les points de cassure ont été confirmés par techniques de FISH (YAC 803G3 chevauchant le gène BCL6 pour le point de cassure 3q27.3 et BAC RP11-728G2 pour le point de cassure 3q29).

Une caractérisation moléculaire par CGH-array précisant les localisations du point de cassure de ce nouveau cas sera présentée et discutée au regard de la littérature.
Caractérisation en CGH-array d'une délétion terminale du bras court d'un chromosome 3 diagnostiquée par MLPA


(2) Assistance Publique Hôpitaux de Paris, Service de Neuropédiatrie, Hôpital Armand-Trousseau, Paris.

Les précédentes observations publiées de délétion du bras court du chromosome 3 suggèrent l'existence d'un phénotype distinct. Un bon nombre de ces cas a été diagnostiqué en cytogénétique classique avec une délétion de grande taille (le plus souvent entre 8 et 12 Mb) et un point de cassure non récurrent en 3p25. Ce syndrome des gènes contigus, rare, associe un retard de croissance, des troubles du développement, un retard mental, une microcéphalie, une dysmorphie craniofaciale et des malformations viscérales. Des patients à phénotype normal ont été aussi décrits.

Nous rapportons le cas d'un enfant âgé de 7 ans au moment du diagnostic. Il est le deuxième enfant de la fratrie, né de parents bien portants non apparentés.

La grossesse a été marquée par la découverte lors de l'échographie systématique de 22 SA d'une dilatation ventriculaire cérébrale modérée associée à une asymétrie cardiaque ventriculaire droite gauche. Un caryotype fœtal sur amniocytes cultivés a été interprété comme normal 46,XY et la grossesse poursuivie avec surveillance échographique régulière. L'enfant est né au terme de 41 SA par césarienne avec un poids de 3 800g, une taille de 50 cm et un PC de 37 cm. La petite enfance a été marquée par un retard d’acquisition de la marche (19 mois), un retard de langage, accentué par des otites sèches à répétition. L'évaluation du développement psychomoteur à 6 ans révèle un fonctionnement cognitif hétérogène. A 7 ans, l'enfant présente des difficultés scolaires associées à un retard intellectuel nécessitant la mise en place de séances de psychomotricité et d’orthophonie. La croissance est harmonieuse. Il existe une discrète dysmorphie faciale et l’IRM cérébrale est normale.

Ce tableau a suscité une nouvelle investigation cytogénétique. Une étude des extrémités télomériques en MLPA (kits P036E1 et P070, MRC Holland, Amsterdam) a diagnostiqué une délétion pure de l'extrémité du bras court d'un chromosome 3, non visible sur le caryotype standard, et confirmée par l’étude des télomères 3p en FISH. L'examen cytogénétique des parents est normal : l’anomalie est survenue de novo.

Une CGH-array oligonucléotidique (Agilent, 180K) a permis de préciser les points de cassure et la taille de cette délétion. La délétion terminale d'environ 6 Mb inclut 14 gènes dont trois des quatre gènes candidats responsables du phénotype de monosomie 3p (CHL1, CTN4, CRBN et MEGAP/srGAP3).

Au total, il s'agit d'un enfant porteur d'une délétion 3p de petite taille, non diagnostiquée en cytogénétique conventionnelle. Cette nouvelle observation contribue ainsi à la description de ce syndrome, confirmant la variabilité phénotypique associée.
Nous rapportons le diagnostic cytogénétique moléculaire d’un remaniement complexe du bras long d’un chromosome 13 associant une délétion 13q34 et une duplication 13q33q34 chez un enfant de 6 ans présentant un retard psychomoteur.

Après une naissance à terme (PN = 3,260 kg ; taille = 50 cm ; PC = 37 cm), un retard de développement a été remarqué dès la première année, avec apparition de la marche vers l’âge de 20 mois puis retard de langage. L’examen clinique à 4 ans 1/2 a montré un retard global homogène avec un âge de développement de 20 mois. L’enfant présente également une dysmorphie faciale avec sourcils interrompus, racine du nez marquée, oreilles épaisses, micrognatisme, et une clinodactylie du Vème doigt. Les échographies cardiaque et rénale n’ont pas décelé de malformations. Le bilan d’hémostase, réalisé en vue d’une amygdalectomie, est perturbé (TP à 55%), avec activité des facteurs VII et X respectivement à 24% et 48% (normale : 65 à 120).

Le caryotype standard (RHG 550 bandes) a montré un remaniement de la structure du bras long d’un chromosome 13 interprété comme une inversion paracentrique inv(13)(q33q34). Les caryotypes parentaux sont sans anomalie décelée, ce qui est en faveur d’un remaniement de novo. L’analyse des métaphases après techniques d’hybridation in situ fluorescente (FISH) avec la sonde de peinture du chromosome 13 et la sonde télomérique 13q (D13S327) (Vysis) a permis de vérifier respectivement la présence d’un signal sur toute la longueur des deux chromosomes 13 et la présence d’un signal en place en 13qter sur les deux chromosomes 13. L’étude des régions télomériques par MLPA (MRC-Holland) a montré une délétion au locus F7, locus du gène du facteur VII (kit P070), non retrouvée au locus CDC16 plus distal (kit P036). Le résultat de cette même étude chez les parents, normal pour les deux loci testés, ne permet pas de conclure à un polymorphisme hérité. L’existence exceptionnelle d’un déficit congénital combiné en facteur VII et en facteur X de la coagulation chez un enfant né de parents non consanguins, nous a conduits à rechercher une délétion de la région 13q34 où sont localisés à environ 1320 kb du télomère les gènes F7 et F10, distants de 2,8 kb. L’analyse des métaphases après FISH utilisant deux sondes de BACs en 13q34 (CHORI, marquage par nick-translation Vysis) a confirmé la délétion d’un segment contenant en particulier les gènes F7 et F10, et le gène SOX1 impliqué dans le développement précoce du système nerveux central. Une analyse cytogénétique moléculaire de haute résolution (minimum 100 kb / 50 marqueurs) par microarrays « Whole Genome 2,7 M Array » (Affymetrix), a confirmé une délétion interstitielle 13q34 de taille évaluée à 2,8 Mb, et a mis également en évidence une duplication 13q33.1-13q34 de taille évaluée à 6,4 Mb, adjacente à la région délétée.

Une analyse FISH avec des sondes de BACs de la région 13q33-13q34 est prévue afin de localiser plus précisément les points de cassure du remaniement, et rechercher une inversion impliquant le segment dupliqué. L’analyse de la ségrégation de microsatellites (STR-PCR) est en cours afin de préciser l’origine maternelle ou paternelle du chromosome 13 remanié. Cette étude souligne l’intérêt de rechercher par des techniques de cytogénétique moléculaire haute résolution un remaniement complexe du type délétion-duplication, lorsque l’anomalie de structure, initialement interprétée après techniques conventionnelles comme une inversion paracentrique de petite taille apparemment équilibrée de novo, est associée à un phénotype anormal. Ceci vise à établir une corrélation génotype-phénotype plus précise et à discuter les mécanismes possibles de formation de ce type d’anomalies.
De la ségrégation des translocations : à propos d’une translocation réciproque (4;15)(q32;q26) suivie sur six générations

Segala J., Damette A., Collonge-Rame MA., Bresson JL.

Service de Génétique, Histologie, Biologie du Développement et de la Reproduction, CHU Hopital St-Jacques, Place St-Jacques, 25030 Besançon

Une translocation réciproque t(4;15)(q32;q26) est découverte chez une patiente à la suite d’un diagnostic chromosomique prénatal réalisé pour signe d’appel échographique au cours de la surveillance d’une grossesse obtenue par fécondation in vitro d’indication essentiellement masculine et ayant repéré un caryotype foetal de type add15(q26)

Quatre ans, quatre grossesses et quatre interruptions médicales de grossesse plus tard, le bilan familial ayant permis de construire un arbre généalogique sur 6 générations, découvre que cette translocation qui n’avait apparemment jamais fait parler d’elle dans les 6 générations de cette branche familiale jusqu’à notre patiente, est connue dans une autre famille apparentée chez laquelle elle s’est manifestée également chez un seul couple dont les 3 premiers nés des 4 enfants étaient handicapés du fait de ses déséquilibres.

Ce type d’observation qui prend en défaut le modèle de conseil génétique et de présentation de risque que l’on peut délivrer à partir des modèles théoriques de ségrégation ou des informations des bases de données, interroge sur les éventuels facteurs qui, au delà de la simple probabilité statistique, seraient susceptibles pour une même translocation et dans une même famille de moduler le niveau de risque pour une grossesse déterminée.
Difficultés des corrélations génotype phénotype dans les microdélétions 1q44

Chambon P. (1,2), Le Meur N. (2), Saugier-Veber P. (2), Joly-Hélas G. (1), Drouin-Garraud V. (3)

(1) Laboratoire de Cytogénétique, CHU Rouen
(2) Laboratoire de Génétique Moléculaire, CHU Rouen
(3) Unité de Génétique Clinique, CHU Rouen

Introduction :
Les corrélations génotype phénotype ont récemment progressé dans les microdélétions 1q44 dont le spectre phénotypique comprend habituellement une petite taille, un retard des acquisitions ou un retard mental, une microcéphalie, une épilepsie, et une agénésie/hypoplasie du corps calleux.

En effet, Boland et al. ont identifié en 2007 deux gènes candidats, AKT3 et ZNF238, potentiellement associés à la microcéphalie et à l'hypoplasie du corps calleux. Van Bon et al. ont remis en question en 2008 le caractère délétère des délétions d'AKT3 à partir de l'étude familiale d'une délétion partielle du gène et ont identifié une région candidate plus distale pour les anomalies du corps calleux, fréquemment associée à une microcéphalie. En 2010 Caliebe et al. décrivent une région candidate encore plus distale associée au retard de langage, à l'épilepsie et aux anomalies du corps calleux. Ainsi il n'existe pas à ce jour de consensus concernant une région candidate pour la microcéphalie et les anomalies du corps calleux. Deux régions différentes pourraient même coexister.

Afin de préciser le rôle de ces régions candidates en 1q44, nous rapportons ici les observations de deux patientes porteuses de microdélétions 1q44 de très petite taille intéressant le gène AKT3.

Patients et Methodes :
Deux patientes non apparentées présentant un retard mental syndromique ont bénéficié d'une exploration chromosomique comprenant un caryotype en bandes RBG et GTG, d'une recherche des microdélétions et microduplications les plus fréquentes par QMPSF et d'une CGH array sur lame Agilent 105K. La première patiente, âgée de 14 ans et demi, présente un retard mental sévère (marche à 5 ans, absence de langage), des troubles du sommeil, un retard de croissance postnatal avec une taille et un poids à -3DS, une microcéphalie inférieure à -5 DS et une dysmorphie faciale. L'IRM cérébrale est normale.

La seconde patiente est née avec un retard de croissance intrautérin modéré et une luxation congénitale de hanche. A 6 ans et demi, elle présente un retard mental, des troubles du comportement, une dysmorphie faciale et une microcéphalie à -3DS. L'IRM cérébrale n'a pas pu être réalisée.

Resultats :
Nous avons identifié chez ces patientes deux microdélétions 1q44 : une délétion de 379kb emportant les derniers exons des gènes SDCCAG8 et AKT3 et une délétion de 196kb emportant les derniers exons du gène AKT3.

Discussion :
La présentation de ces deux observations et du résultat des études parentales devrait permettre de préciser les corrélations génotypes-phénotype dans les microdélétions 1q44.
Translocation X;5 déséquilibrée chez un enfant dysmorphique

Miller K. (1), Arslan-Kirchner M. (1), von Kaisenberg C. (2), Pabst B. (1)

(1) Institut für Humangenetik, Medizinische Hochschule Hannover
(2) Frauenklinik, Medizinische Hochschule Hannover

Nous rapportons l’observation d’une translocation déséquilibrée t(X;5) d’origine maternelle chez un enfant dysmorphique.

À la 33ième semaine de la troisième grossesse d’une femme âgée de 33 ans, un défaut de la cloison interventriculaire a été découvert chez le fœtus. La première grossesse s’était déroulée sans problème. La deuxième grossesse a prit fin dans une fausse couche dans la 8ième semaine de la grossesse. L’analyse cytogénétique sur amniocytes a montré le remplacement d’un chromosome X par un chromosome dérivé d’une translocation entre les bras longs d’un chromosome X et un chromosome 5. La mère était porteuse d’une translocation équilibrée t(X;5). Le caryotype de l’enfant est 45,X,der(X)t(X;5)(q28;q31.1)mat.

L’enfant est né dans la 37ième semaine d’aménorrhée. Les mensurations à la naissance étaient: poids 2585g, taille 45cm, périmètre cranien 29,5 cm (microcéphale). L’examen clinique a noté les dysmorphies suivantes: reines doubles de chaque côté, kyste dermoïde du sacrum, persistance du canal artériel et absence partielle de la cloison interventriculaire.

Les dysmorphies chez l’enfant peuvent être attribuées à la duplication de la partie distale du bras long du chromosome 5 sans inactivation complète des parties autosomales attachées au chromosome X.
Apparition d'une trisomie 20 dans la lignée de cellules souches embryonnaires humaines HD90

Pellestor F., Monzo C., Nadal L., De Vos J., Hamamah S.

Institut de Recherche en Biothérapie, INSERM U847, Montpellier
CHRU St Eloi, Montpellier

Introduction:
La stabilité chromosomique des lignées de cellules souches embryonnaires humaines (CSEh) est un paramètre essentiel pour l'utilisation thérapeutique de ces cellules. Plusieurs études ont mis l'accent sur l'instabilité chromosomique de certaines lignées de CSEh en fonction de leurs origines, de leur modes de culture ou de leurs temps de culture. Nous rapportons l'apparition d'une trisomie 20 dans la lignée HD90, au cours des 30 premiers passages de culture cellulaire.

Matériel et Méthode:
La lignée HD90 est issue d'un embryon humain pré-implantatoire porteur d'un allèle muté du gène VHL. Cette lignée est cultivée sur une couche de fibroblastes humains irradiés, et les passages s'effectuent par dissection manuelle. Au cours de différents passages, l'analyse chromosomique de cette lignée a été réalisée en bandes R, et par FISH en combinant l'utilisation de peintures chromosomiques et de sondes locus-spécifiques.

Résultats:

Conclusion:
L'analyse cytogénétique conduite sur une trentaine de passages a permis de mettre en évidence l'apparition progressive d'une anomalie de nombre au sein d'une lignée de CSEh en culture. La présence de trisomies (en particulier 12 ou 17) a été rapportée dans plusieurs lignées de CSEh. Dans le cas présent, la mutation VHL pourrait avoir favorisé l'instabilité chromosomique et l'apparition de la trisomie 20. L'anéuploïdie pourrait conférer un avantage prolifératif aux cellules porteuses et conduire rapidement à une modification irréversible du patrimoine chromosomique de lignées de CSEh en culture. La réalisation régulière du caryotype des CSEh est donc un volet essentiel du contrôle de qualité des cellules souches embryonnaires humaines en culture.

Cette étude a reçu le soutien financier de la FRM, de l'AFM et de l'Agence de la Biomédecine.
Analyse spermatique de la ségrégation méiotique d’un patient porteur d’un réarrangement chromosomique complexe :
46,XY,t(3;6)(p24p21.2),inv(8)(p11.2q21.2)

Ferfouri F. (1,2), Tapia S. (3), Boitrelle F. (1,2), Molina Gomes D. (1,2), Albert M. (1,2), Selva J. (1,2), Vialard F. (1,2)

(1) Service d’Histologie, Embryologie, Biologie de la Reproduction, Cytogénétique et Génétique Médicale CHI Poissy Saint-Germain, 78303 Poissy, France
(2) EA 2493, UVSQ, Versailles Saint-Quentin, France
(3) Laboratoire Biomnis, 75014 Paris, France

Introduction:
Les réarrangements chromosomiques complexes (CCR) sont des anomalies de structure, équilibrées ou déséquilibrées, qui impliquent au moins trois cassures localisées sur au moins deux chromosomes avec échanges de matériel de génétic. Une non-disjonction méiotique des chromo-

Matériels et méthodes:

Résultats:
Les taux de malségrégation sont de 61.2% pour la translocation réciproque (n=1054) et de 1.6% pour l’inversion péricentrique (n=1033). Pour l’EIC, le taux d’anéuploïdie varie de 0.1% (chromosome 13) à 0.8% (gonosomes). Le taux global d’anéuploïdie est significativement plus élevé que les patients contrôles (4.6% vs 3.1%). Le taux de fragmentation de l’ADN spermatique (15.5%, n = 1165) est légèrement augmenté par rapport à notre normale au sein de notre laboratoire (<13%).

Conclusion:
Le taux de malségrégation de la translocation réciproque à 61.2% est en accord avec la littérature. Le taux d’anéuploïdie de l’inversion est à 1.6% ce qui est concordant avec le fait que le segment inversé est en dessous des seuils de 50% (33%) de la longueur total du chromosome et de 100Mb (51Mb), normes au-delà desquelles il existe une augmentation des taux de malségrégation. La présence surajoutée de la translocation ne semble pas avoir d’impact sur la ségrégation méiotique du chromosome 8 impliqué dans l’inversion. Rien ne peut être dit sur l’effet de l’inversion sur la ségrégation des chromosomes transloqués. Notons chez ce patient, une légère augmentation de l’EIC (4.6%). Il ne semble pas que les deux remaniements augmentent significativement ce taux de fragmentation de l’ADN spermatique (15%).
Le diagnostic préconceptionnel chez les patientes porteuses d'une translocation réciproque : alternative au diagnostic implantatoire et intérêt en cytogénétique fondamentale

Molina Gomes D., Boitrelle F., Bergere M., Boudjenah R., Bailly M., Wainer R., Selva J., Vialard F.

Département de Cytogénétique, Biologie de la reproduction, Gynécologie et Obstétrique, CHI Poissy St Germain, 10 rue du Champs Gaillard, 78303 Poissy Cedex
EA 2493, UVSQ, 78000 Versailles

Introduction :
La découverte d'une translocation réciproque chez une femme fait suite à des échecs de reproduction ou à une enquête familiale. Certaines patientes s'orientent vers le diagnostic préimplantatoire (DPI) sur embryon ou le diagnostic préconceptionnel (DPC) sur 1er globule polaire (GP) principalement en raison du délai d'attente et des critères d'inclusion stricts avant DPI. Nous rapportons ici les résultats du DPC à Poissy chez ces patientes porteuses de translocation réciproque.

Méthode :
Après recueil des ovocytes et perforation de la zone pellucide au laser (Zylos TK Hamilton), le GP est biopsié et la FISH réalisée. Seuls les ovocytes, dont le GP a été diagnostiqué normal, sont injectés. Un conseil génétique est systématiquement réalisé avant transfert embryonnaire pour expliquer les résultats.

Patientes :
Nous rapportons cette démarche chez 10 patientes, âgées de 23 à 39 ans, qui ont signé un consentement stipulant, entre autre, que l'information sur le diagnostic préimplantatoire leur avait bien été donnée. 2 patientes ont été incluses en ICSI pour infertilité masculine et 8 autres ont eu une démarche motivée par les antécédents pathologiques : naissance d'un enfant porteur d'une translocation déséquilibrée (n=1), IMG (n=3), FCS-R (n=8).

Résultats :
Sur les 123 ovocytes obtenus, 113 GP (91.9%) ont pu être obtenus pour une analyse en FISH et 103 (83.7%) ont été analysés. Seuls 32 (31.1%) GP ont été diagnostiqués comme normaux avec des taux variant de 20.0 à 42.9%. Tous les types de ségrégation ont été retrouvés, et chez certaines patientes on observe une forte proportion de GP montrant des crossing over (CO) équilibrés ou non. Sur 19 tentatives, 15 transferts ont été réalisés et 20 embryons ont été transférés. 2 grossesses ont été obtenues, une ayant conduit à une GEU et une à la naissance de jumeaux. Le taux d'implantation embryonnaire est donc de 15% et un taux de grossesse par transfert à 13.3%.

Conclusion :
Le taux d'implantation embryonnaire et de grossesse par transfert sont en accord avec les résultats européens. Les taux d'anomalies des GP (69%) sont supérieurs à ceux retrouvés dans les spermatozoïdes (environ 50% dans la littérature). Ceci pourrait être du à un biais de sélection de notre population, la majorité des patientes ayant des antécédents lourds. L'identification des CO pourrait nous permettre de mieux comprendre les mécanismes de régulation de la méiose I et de mieux définir en fonction des fragments impliqués le risque réel de malségrégation.
Etude des aneuploïdies spermatiques chez des patients ayant une prédominance des anomalies de l’acrosome

Brahem S., Mehdi M., Ibala S., Ajina M., Elghazal H., Saad A.

Laboratoire de Cytogénétique, Biologie Moléculaire et Biologie de la Reproduction Humaines, CHU Farhat Hached, Sousse, Tunisie

Objectifs :
Le but de cette étude est de détecter l’incidence des aneuploïdies spermatiques chez des hommes ayant une altération sévère de la morphologie spermatique avec prédominance des anomalies de l’acrosome.

Matériel et méthodes :
Notre étude a porté sur 8 patients ayant une tétrazoospermie sévère avec prédominance des anomalies de l’acrosome et sur 20 sujets avec bonnes caractéristiques du spermogramme qui vont jouer le rôle du témoin. La technique d’hybridation in situ fluorescente (FISH) avec des sondes centromériques des chromosomes 8, X et Y a été utilisée pour l’étude des anomalies chromosomiques. Un minimum de 1500 spermatozoïdes a été analysé par sujet.

Résultats :
L’âge moyen de nos patients étaient de 38 ans. Tous nos patients présentent une infertilité primaire avec une durée de 6 ans en moyenne. Les résultats du spermogramme montrent une tétrazoospermie totale (100 % des formes anormales) avec prédominance des anomalies de l’acrosome (90 %). L’hybridation in situ met en évidence la présence d’un taux très élevé d’aneuploïdies spermatiques chez nos patients par rapport aux témoins (7.6 % vs 1.52%), avec un taux de diploïdie de 0.82 %. La fréquence de disomie gonosomique (XX, YY et XY) est plus importante que celle de la disomie 8. Les anomalies des chromosomes sexuels dus à la méiose I sont plus importantes que celles du à la méiose II. Une corrélation positive est retrouvée entre les anomalies chromosomiques et les anomalies de l’acrosome.

Conclusions :
Ces résultats suggèrent que les patients hypofertiles avec altération sévère de la morphologie de l’acrosome présentent un taux élevé d’aneuploïdies spermatiques, ces anomalies chromosomiques semblent altérer le pouvoir fécondant des spermatozoïdes.
Fragmentation de l'ADN spermatique et équipement chromosomique au sein des mêmes gamètes chez des patients infertiles

Perrin A. (1,2), Suarez D.(1), Basinko A. (1,2), Douet-Guilbert N. (1,2), Le Bris MJ. (1,2), Amice V. (2), De Braekeleer M. (1,2), Morel F. (1,2)

(1) Laboratoire d’Histologie, Embryologie et Cytogénétique, INSERM U613, Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest.
(1) Service de Cytogénétique, Cytologie et Biologie de la Reproduction, Hôpital Morvan, CHRU Brest, Brest.

Précédemment, nous avons observé une augmentation du taux de fragmentation chez des patients porteurs d’anomalie chromosomique de structure par rapport à des hommes fertiles\(^1\) sans mettre en évidence de corrélation entre les taux de fragmentation et de gamètes chromosomiquement déséquilibrés. Cependant, ces travaux ayant été réalisés sur éjaculat total, nous ne savons pas si les gamètes déséquilibrés ont, globalement, un ADN plus fragmenté que ceux dont l’équipement est normal. L’objectif est de répondre à cette question chez des patients infertiles afin de lier l’équipement chromosomique de chaque gamète à l’état de son ADN fragmenté ou non.

Nous avons étudié les gamètes de 4 patient infertiles, P1 : 46,XY, P2 : 46,XY,t(13;15)(q31;q26.2), P3 : 46,XY,t(7;8)(p12;p22) et P4 : 46,XY,t(6;8)(q27;q24.1). Nous avons réalisé une technique TUNEL utilisant la rhodamine. Nous avons effectué une galerie d’images des gamètes grâce au logiciel Metafer et notifié sur chacune si le gamète était fragmenté ou non. Une technique FISH a été faite sur les mêmes gamètes pour déterminer leur équipement chromosomique. Les sondes utilisées sont : P1 : CEP X+Y+18, P2 : 13qter+CEP 15+pool de BACs s’hybridant en 15q26.3, P3 : CEP 7+8+8pter et P4 : 6qter+CEP 8+pool de BACs s’hybridant en 8q24.3.

Les analyses ont été réalisées sur plus de 2000 spermatozoïdes par patient. Les taux de fragmentation de l’ADN sont de 16%, 6,3%, 4,7% et 3,2% respectivement pour P1, P2, P3 et P4. En FISH, les pourcentages de gamètes chromosomiquement déséquilibrés sont les suivants : P1 : 3,9%, P2 : 61,4%, P3 : 55,6% et P4 : 59%. Pour P1, il n’apparaît pas de différence significative du taux de fragmentation quelque soit l’équipement chromosomique. Pour P2, P3 et P4, il y a un taux d’ADN fragmenté significativement augmenté dans les gamètes déséquilibrés versus les normaux (7,6% versus 4,3%, 6,2% versus 2,9% et 4,6% versus 1%). Il existe un mode de ségrégation pour lequel il y a significativement plus de gamètes fragmentés, ce sont les modes 3:1 pour P2 et P5 et adjacent 1 pour P3.

Chez les 3 patients porteurs de translocation réciproque équilibrée, le taux d’ADN fragmenté est significativement augmenté dans les gamètes déséquilibrés. De plus, il apparaît lié au type de déséquilibre, dépendant du mode de ségrégation. Les gamètes chromosomiquement anormaux pourraient être “étiquetés” comme devant être éliminés par apoptose mais ce processus ne serait pas mené à terme.

Analyse de risques de type AMDEC appliquée à l'installation d'un chercheur de métaphases

Delugre G. (1), Calmier P. (2), Forte D. (2), Chatron P. (1,2), Lochu P. (1)

(1) Laboratoire de cytogénétique - GEN-BIO - 62 rue Bonnabaud - 63965 Clermont-Ferrand cedex 9 - FRANCE
(2) Pôle Qualité - GEN-BIO - 62 rue Bonnabaud - 63965 Clermont-Ferrand cedex 9 - FRANCE


Dans le but d’optimiser et de standardiser la recherche des métaphases, nous avons récemment automatisé cette étape. Notre choix s’est porté sur le chercheur de métaphases de GENETIX® selon un cahier des charges pré établi conformément à notre procédure d’achat.

Les actions préventives systématiques mise en place lors de l’achat d’un nouveau matériel ont été conduites en utilisant la méthode AMDEC (Analyse des Modes de Défaillance, de leurs Effets et de leur Criticité) conformément à notre démarche d’amélioration de la qualité.

La méthode AMDEC est très utilisée dans l’industrie aéronautique, automobile ou du matériel médical, où elle permet d’identifier les modes de défaillances de manière exhaustive.

Dans notre laboratoire, cet outil a déjà été utilisé à plusieurs reprises lors de la mise en place de nouveaux processus ou automates. Il constitue aujourd’hui un préalable à tout projet impliquant la réorganisation complète d’un service.

Cette démarche a impliqué le biologiste responsable du service de Cytogénétique, les référents choisis pour l’automate ainsi qu’un animateur appartenant au service qualité. Plusieurs réunions se sont déroulées pendant lesquelles des brainstormings ont été mis en place afin de déterminer les risques ainsi que leur criticité, puis pour chaque risque identifié, d’en analyser les causes et de trouver la ou les solution(s) qui élimineront la cause principale.

Cette analyse nous a permis notamment de décider le développement informatique permettant l’utilisation de lames à code barre unique afin d’éviter un risque d’erreur d’identification de patients ou de sécuriser la lecture du code barre par une vérification croisée indépendante. Nous avons également pu, grâce à cette action préventive, orienter la formation des techniciens et des biologistes à l’utilisation de ce nouveau matériel et définir la méthode de validation initiale du chercheur de métaphases qui est requise par la norme ISO 15189.

Enfin, cette analyse de risques a permis de rédiger la base documentaire relative à la gestion et à l'utilisation de cet automate (procédures, modes opératoires, documents d'enregistrement).

L’utilisation de la méthode AMDEC nous a ainsi apporté une plus grande sérénité lors de la mise en routine du chercheur de métaphases. Elle nous a permis d’impliquer les collaborateurs du service de cytogénétique dans le changement de l’organisation et de les faire adhérer aux nouvelles méthodes de travail.
La cytogénétique demain : Le développement des nouvelles technologies est-il une opportunité ou un piège ?

Julia S. (1,2), Soulier A. (2), Sanlaville D. (3), Cambon-Thomsen A. (2), Bourrouillou G. (1)

(1) Service de Génétique Médicale, Hôpital Purpan, CHU de Toulouse 
(2) Génomique et santé publique : approche interdisciplinaire, Département d’épidémiologie et de santé publique, Inserm U558, UPS, Toulouse 
(3) Service de Cytogénétique Constitutionnelle, CHU de Lyon

La cytogénétique a connu ces dernières années de nombreux bouleversements liés :
- au transfert en diagnostic des Technologies à haut débit nécessitant à des compétences en biologie moléculaire.
- au développement de méthodes d’analyses adaptées au flot massif des données et à leur complexité.
- à l’extension du champ et des modalités de proposition des tests génétiques ainsi de la diffusion rapide et non contrôlée des connaissances scientifiques via les nouvelles technologies de l’information.

L’utilisation des nouvelles technologies conduit à une transformation de la cytogénétique risquant d’affecter en profondeur l’organisation des services de génétique.

De plus le cytogénéticien va être confronté à de nouveaux types et de nouvelles sources d’information. Le conseil génétique qui dépend d’une part de la nature des données génétiques et d’autre part des connaissances des patients va en être modifié.

Ainsi nous observons l’émergence d’une nouvelle forme de médecine qui va changer radicalement notre pratique et remet en question notre vision traditionnelle de l’information génétique.

Nous discutons de l’impact potentiel de cette évolution sur la pratique de la cytogénétique, au niveau des laboratoires et du conseil génétique ; et mettons notamment en balance « le coût du test génétique » vs « le cout de l’information génétique ». 

128
SECTION
CYTOGENETIQUE
ONCO-HEMATOLOGIQUE
Lymphome de Burkitt des cellules du donneur après greffe de moelle allogénique chez un patient traité pour lymphome malin à grandes cellules


(1) Laboratoire d'hémotologie, CHU Hôpital Nord, 42055 Saint-Etienne.
(2) Service d'hémotologie, ICL, 42270 Saint-Priest-en-Jarez.

Nous rapportons le cas d'un lymphome / leucémie (LNH/LA) de type Burkitt se développant dans les cellules du donneur chez un homme de 48 ans à la suite d'une greffe allogénique de cellules souches hématopoïétiques pour lymphome diffus à grandes cellules B (DLBCL).


L'analyse cytogénétique conventionnelle sur moelle (bandes R et G) montre la formule suivante :

//46,X,-X,-6,t(8;22)(q24;q11),add(9)(p13), dup(12)(q12q21), add(13)(q22),-16,+3mar[5]
/46,XX[18]

L'analyse FISH avec les sondes :

(1) MYC dual color (Abbott) montre le remaniement du locus en 8q24 dans 21 mitoses sur 50 et 19 noyaux sur 200 observés.

(2) centromériques X et Y montre un chimérisme complet (XX) dans les 50 mitoses et 200 noyaux observés. Aucun signal correspondant au locus en DYZ3 n'a été retrouvé. Le patient est décédé à la suite d'une embolie pulmonaire massive au cours du traitement d'induction. La sœur donneuse va bien et ne présente pas de signe de maladie maligne ni avant ni après la greffe.

Les leucémies post-allogreffes précoces sont le plus souvent des rechutes de la maladie initiale du receveur alors que les leucémies à partir des cellules du donneur (LCD) ont une apparition plus tardive. De fait il est possible que la plus part des rechutes tardives soient des LCD. Le mécanisme étiologique des LCD est encore mal compris mais leur origine est probablement multifactorielle.

Notre cas est intéressant du fait du type de leucémie en cause. Les LCD sont, dans leur grande majorité, des leucémies aigües myéloblastiques. La plus part des désordres lymphoprolifératifs à partir des cellules du donneur ont une survenue précoce et sont (1) associées à l'immunosuppression et (2) à la présence de l'EBV. Ainsi la pathogénèse de notre observation est probablement un lié à mécanisme original.
**Translocation sauteuse et leucémie lymphoïde chronique**


(1) Laboratoire de Cytogénétique, CHU d'Amiens, Université de Picardie Jules Verne, Amiens
(2) Médecine interne, Centre Hospitalier d'Abbeville, 80100 ABBEVILLE

**Introduction:**

(1) La leucémie lymphoïde chronique (LLC) est une hémopathie de prolifération à long terme du lymphocyte, à 95% de la lignée B; le score de Matutes est > ou égal à 4. (2) Les translocations sauteuses (TS) présentes au caryotype sont exceptionnelles. Elles surviennent surtout lors d'un cancer et leur participation dans la leucémogénèse est probable; cependant une origine constitutionnelle n’est pas exclue, vérifiée par le caryotype constitutionnel.

**Observation:**

Femme de 77 ans, pour laquelle une LLC est révélée en 2006 par une formule numération qui identifie une hyperleucocytose à 24 giga/l dont une hyperlymphocytose vraie à 88% soit 21,12 giga/l, une anémie à 7.5g/100 d’hémoglobine et des plaquettes à 144 giga/l; l’indice de Matutes est à 5. En 2008, les leucocytes sont à 53,8 giga/l dont une hyperlymphocytose à 85% soit 45,7 giga/l, et les plaquettes à 100 giga/l.

**Cytogénétique: - Matériel et Méthode:**

En 2010, le caryotype conventionnel onco-hématologique réalisé après cultures du sang sur héparine et un temps de culture de 72h+réactifs (sans mitogènes), identifie la présence de plusieurs clones pathologiques, ayant comme point commun la présence d’une TS, la presque totalité du bras long d’un chromosome 8 comme chromosome donneur (CD) et différents chromosomes receveurs (CR) dont un 2, 3, 7, 9 et 18 aboutissant à la présence d’une trisomie 8q partielle. Le clone avec le chromosome 18 comme chromosome receveur est majoritaire, et est à 45 chromosomes avec un der(8;18) et la perte d’un chromosome 18; les autres clones sont à 46 chromosomes avec un der(8;CR) sans perte de chromosome. Par ailleurs l'hybridation de sondes (FISH) utilisées dans la LLC: LSI D13S319 en 13q14.3/13q34/CEP12 (Vysis) et LSI TP53 en 17p13.1/LSI ATM en 11q22.3 (Vysis) montre une délétion 13q14 homozygote (31/40 mitoses et 88/100 noyaux) ou hétérozygote (9/40 mitoses et 22/100 noyaux), sans délétion TP53 ou ATM, ni trisomie 12.

**Résultats:**

Présence d’une TS avec le bras long d’un chromosome 8 comme CD, et délétions 13q14 homozygote ou hétérozygote pour la totalité des cellules analysées.

**Conclusion:**

L’impact pronostique de la TS dans la LLC est difficile à établir, les délétions 13q14 homozygote ou hétérozygote étant généralement de bon pronostic.

**Bibliographie:**

Les techniques FISH conventionnelles sur chromosome ou noyau interphasique présentent une limite de résolution pour l’analyse structurale de remaniements tels que duplications, inversions ou amplifications. Une solution morphologique est l’étirement linéaire de fibres chromatiniennes, permettant l’analyse FISH en haute résolution sur fibre linéaire. Nous avons développé, à partir de culots cytognétiques conservés dans le fixateur acide/alcool, une technique permettant d’obtenir de tels étirements linéaires, plus simple que le peignage moléculaire qui nécessite l’utilisation de cellules fraîches.

Matériel et méthode
Les culots cellulaires à partir de culture de moelle osseuse ont été étalés sur lames propres non traitées, séchées à l’air et plongées dans la solution de lyse. Après séchage et déshydratation, les hybridations ont été faites dans des conditions standard avec des sondes commerciales ou BAC marquées directement. La contre coloration des fibres a été effectuée avec le Hoescht 33342 et les préparations ont été analysées avec un microscope inversé champs large équipé d’une caméra CCD Roper CoolSnap pilotée par le logiciel METAMORPH.

Résultats
Sur les étalements suffisamment dilués pour obtenir des cellules bien séparées, on observe des filaments chromatiniens, non chevauchant d’une cellule à l’autre, en "chevelure" ou "queue de comète" à partir de restes nucléaires. Des techniques FISH réalisées sur des lames témoin avec une sonde MLL (Vysis, dual color) et des sondes BAC de la région 12p12.1 montrent un signal linéaire dont la taille permet de calculer le facteur d’élongation. Celui-ci peut varier selon les cellules. Le marquage des histones H3 caractéristiques de l’hétérochromatine (H3K9me3) montre aussi un marquage différemment distribué entre les cellules, indiquant que le degré variable d’étirement chromatinien semble dépendant du niveau de compaction de la chromatine nucléaire, probablement en relation avec le type cellulaire et le stade de maturation de la cellule. Les cellules en cycle ont aussi été identifiées après pulse de BrdU en fin de culture.

Conclusion
Les préparations cytognétiques fixées de façon standard sont utilisables pour l’analyse FISH de la fibre chromatinienne étirée. L’analyse des différents paramètres impliqués dans l’étirement chromatinien est en cours.
Les délétions du bras long du chromosome 5, del(5q), sont des anomalies récurrentes retrouvées dans 10 à 15% des syndromes myélodysplasiques (SMD) de novo. Dans une étude de ces délétions chez 51 patients atteints de SMD, nous avons identifié un variant d’une délétion 5q, un isochromosome du bras court de chromosome 5, i(5p). Le but de cette étude est de décrire les caractéristiques cytogénétiques et cliniques d’un i(5p) chez un patient porteur d’un syndrome myélodysplasique.

Le patient âgé de 19 ans présente une cytopénie réfractaire avec dysplasie multilignée (CRMD). L’abstention thérapeutique avec surveillance hématologique est décidée. Le patient est perdu de vue et consulte deux ans plus tard pour une anémie profonde. Le myélogramme réalisé retrouve une CRMD. Trois mois plus tard, la myélodysplasie se transforme en leucémie aiguë myéloblastique (LAM).

L’étude en cytogénétique conventionnelle (RHG) sur un prélèvement de moelle osseuse est réalisée au moment du diagnostic et en suivi. Une étude en hybridation in situ fluorescente (FISH) avec un panel de sondes spécifiques des chromosomes 5 et 7 a été effectuée. Au diagnostic, l’étude en cytogénétique conventionnelle révèle un clone avec une del(5q) isolée. L’étude FISH met en évidence un i(5p). Deux ans plus tard, deux sous-clones dérivant du clone portant l’i(5p) avec des anomalies complexes du chromosome 7 sont identifiés. Au stade de LAM, les sous-clones identifiés précédemment ont persisté avec prédominance du clone le plus évolué.

Les i(5p) sont des anomalies rares dans les hémopathies. Dans la littérature, deux types d’i(5p) sont observés : type 1, i(5p) engendrant une perte du bras long et une trisomie du bras court du chromosome 5 ; type 2, +i(5p) engendrant une tétrasomie du bras court du chromosome 5. A ce jour, seulement 6 cas d’i(5p) de type 1 sont rapportés dans les hémopathies myéloïdes. Variants de del(5q), ils sont tous associés à des caryotypes complexes.

Dans cette étude, nous décrivons le premier cas d’i(5p) de type 1 sans anomalie chromosomique associée. Le caryotype se complexifie rapidement, précédant la transformation en leucémie aiguë. Les i(5p), anomalies récurrentes dans les SMD/LAM, sont peut-être sous-estimées, justifiant une étude FISH systématique des del(5q) avec les sondes spécifiques 5p afin de les identifier. Cette anomalie associant monosomie 5q et trisomie 5p semble de mauvais pronostic mais d’autres cas sont nécessaires pour étayer le pronostic.
La délétion de p53 est une anomalie récurrente des Leucémies Aiguës Myéloïdes à caryotype monosomique


(1) CHU Carémeau - Laboratoire de Cytologie clinique et Cytogénétique - Nîmes
(2) Clinique du Parc - Hématologie et oncologie médicale - Castelnau le Lez

Introduction
La délétion en 17p13.1 ciblant la région du gène p53 est retrouvée dans 5% des Leucémies Aiguës Myéloïdes (LAM). Cette anomalie a été rapportée pour être corrélée à un mauvais pronostic et plus fréquemment retrouvée dans les caryotypes complexes (>= 3 anomalies). Récemment, au sein du groupe cytogénétique de mauvais pronostic, une nouvelle entité a été définie : les LAM à caryotype monosomique (LAM-CM) caractérisées par la présence d’au moins deux monosomies autosomales ou bien une monosomie autosomale associée à une anomalie de structure. Cette nouvelle classe est associée à un pronostic hautement défavorable quelque soit l’âge lors du diagnostic. Cette étude a pour but d’évaluer la fréquence de la délétion en 17p13.1 dans le groupe des LAM à caryotype monosomique.

Materiels et Methodes

Resultats et Discussion
Sur les 252 LAM incluses, un caryotype monosomique a été retrouvé chez 37 patients (14,7%). Parmi les LAM-CM pour lesquelles nous disposions de matériel cellulaire, 13 (59,1%) présentaient une délétion en 17p13.1, résultant majoritairement d’une perte complète du chromosome 17 (75%) et représentant l’anomalie la plus fréquemment retrouvée avec la délétion 5q (ou monosomie 5) suivie par la délétion 7q (ou monosomie 7) dans 45,5% des cas. La délétion de p53 ne semblait pas être associée avec les délétions intéressant les chromosomes 5 et 7 (p=0,6481).

Si elle est peu fréquente globalement dans les LAM, Seifert et al. rapportent une incidence de la délétion 17p13.1 de l’ordre de 29% dans le groupe des caryotypes complexes. Sachant que 94,6% de nos patients pouvaient être considérés comme ayant un caryotype complexe, il n’est pas étonnant d’avoir trouvé une fréquence élevée de cette anomalie. Cependant, elle est ici bien supérieure à celle rapportée par Seifert nous laissant penser que la délétion de p53 serait préférentiellement associée au sous-groupe des LAM-CM. L’incidence de cette altération pourrait expliquer en partie le pronostic défavorable de ce sous-groupe. Il serait donc intéressant de réaliser une étude plus large afin d’évaluer l’impact de cette anomalie sur la survie globale au sein des LAM-CM.
Cytogénétique et génomique des tumeurs du rein


(1) Unité de Génétique somatique / Cytogénétique et Plateforme Hospitalière de Génétique Moléculaire INCa, Institut Curie, Paris
(2) Services d'Anatomie pathologique, Hôpital Saint-Joseph et Hôpital Cochin, Paris.

Les tumeurs à cellules rénales forment un groupe hétérogène constitué essentiellement des carcinomes à cellules rénales (CCR) à cellules claires (75% des cas) et des CCR papillaires de type 1 (10%), de diagnostic histologique, en règle, aisé. Cependant, 10% des tumeurs rénales posent des problèmes de classification, voire de diagnostic de malignité, en raison de caractéristiques histologiques chevauchantes ou combinées entre les types, d'une morphologie atypique, ou de l'expression ambiguë de marqueurs immunohistochimiques.

Les anomalies chromosomiques caractérisant les principaux types de tumeurs rénales ont permis de préciser leur classification; les tumeurs se répartissent globalement en types à déséquilibres génomiques systématisés, et types à translocations de gènes TFE (famille MiT), pour les carcinomes juvéniles (Tableau 1). L'analyse caryotypique permet de reconnaître les anomalies chromosomiques caractéristiques, mais, compte tenu de ses limitations et en fonction du type d'altérations à identifier, elle tend à être supplantée en routine par les techniques d'analyse pangénomique, la RT-PCR et/ou la FISH. Les tumeurs potentiellement à déséquilibres génomiques sont analysées par CGH- ou SNP-array. Les profils des CCR de type 2 apparaissent hétérogènes, un sous-groupe d'entre eux paraissant correspondre à des CCR de type 1 évolués sur le plan génomique. Les carcinomes juvéniles sont caractérisés par deux types de translocations. Le premier implique le gène TFE3 situé en Xp11.2, qui peut être transloqué aux gènes PRCC, SFPQ, et ASPSCR1, pour les récurrents. Le second implique TFEB, situé en 6p21, placé sous la dépendance de l’activité promotrice du gène Alpha, localisé en 11q13. Le diagnostic moléculaire de ces remaniements a été développé. Pour les translocations TFE3, une RT-PCR multiplexe en temps réel permet de tester en une seule étape l’ensemble les variants connus, tandis que pour les t(6;11) une analyse par FISH détecte les altérations du locus TFEB.

Ainsi, le développement d’un panel de techniques applicables en routine doit permettre de classifier les types tumoraux de diagnostic histologique difficile quelque soit le type de prélèvement disponible. Les CCR sont l’un des rares exemples de carcinomes dont la cytogénétique est informative. L’intégration progressive des données issues de la génétique moléculaire devrait permettre à terme d’optimiser la prise en charge des patients, par une meilleure évaluation du pronostic et la possibilité de la détermination de l’éligibilité à une thérapeutique spécifique.
Étude de l'instabilité chromosomique induite chez des enfants atteints d'aplasie médullaire

Talmoudi F. (1,2), Ayed W. (1,2), Torjmane L. (3), Kilani O. (1), Abidli N. (1), Guermani H. (1,2), Chemkhi I. (1,2), Hdiij S. (4), Elloumi M. (4), Mellouli F. (3), Ben Othmen T. (3), Amouri A. (1,2)

(1) Laboratoire de Cytogénétique, Institut Pasteur de Tunis, Tunisie
(2) Unité de Recherche Exploration Moléculaire de maladies Orphelines d’Origine Génétique, Institut Pasteur de Tunis, Tunisie
(3) Centre National de Greffe de Moelle Osseuse, Tunis
(4) Service d’Hématologie, Hopital Hédi Chaker, Sfax

L’aplasie médullaire (AM) est une insuffisance médullaire quantitative et responsable d’une pancytopenie périphérique. Il peut s'agir d'une cause intrinsèque génétique dans les AM constitutionnelles ou d'une cause extrinsèque ou environnementale dans les AM acquises.

L'anémie de Fanconi est une pathologie génétique récessive qui associe une aplasie médullaire d'installation progressive, pancytopenie, malformations congénitales et prédispositions aux cancers. Elle est caractérisée par une hypersensibilité cellulaire et chromosomique aux agents pontant l'ADN tels que le diepoxybutane (DEB) et mitomycine C (MMC).

Au cours des dernières années, nous avons colligé 148 enfants âgés entre 2 mois et 16 ans atteints d’aplasie médullaire (AM). Dans notre laboratoire, le diagnostic cytogénétique de l’AF a consisté à faire une recherche d'instabilité chromosomique spontanée sur une culture standard pour le patient suspect de l’AF et une recherche d'instabilité chromosomique induite par la Mitomycine C (MMC) avec une concentration de 50ng/ml, pour le patient ainsi que pour un témoin.

Le diagnostic d’AF est retenu à partir d’un pourcentage des mitoses instables supérieurs ou égal à 70%.

Selon leur sensibilité vis à vis de la MMC nous avons pu retenir avec certitude le diagnostic d’anémie de Fanconi chez 30 patients soit 20,27% des cas étudiés. La moitié de ces enfants présentaient des anomalies congénitales. Le diagnostic de l’AF a été exclu pour 84 cas soit 56,75 % des patients étudiés.

Le test d’instabilité chromosomique devrait être systématiquement demandé dans le cadre du bilan étiologique d’une aplasie médullaire quand une origine acquise a été écartée. La présence de signes cliniques évocateurs d’Anémie de Fanconi devrait être précisée afin de réaliser le test à la MMC (ou au DEB). En effet, la greffe de moelle osseuse allogénique étant généralement le seul traitement curatif, le traitement d’induction est totalement différent selon qu’il s’agit ou non d’un syndrome d’instabilité.
Le deuxième cas décrit de translocation t(X;21)(p22;q22) dans une leucémie aiguë myéloïde : un variant moléculaire ?


(1) Hôpital Bicêtre-laboratoire d’hématologie-Kremlin-Bicêtre
(2) Hôpital Necker-laboratoire de cytogénétique-Paris
(3) Hôpital Paul Brousse-FSMST-Villejuif

Le gène AML1 (ou RUNX1) est localisé en 21q22. Il code pour la protéine CBFA2 (core binding protein factor) qui, associé à la protéine CBFB, forme un hétérodimère intervenant dans la régulation de la transcription de nombreux gènes impliqués dans la production et la différenciation des cellules souches hématopoïétiques. L’implication de ce gène dans de nombreuses translocations est fréquente, qu’il s’agisse de leucémies aiguës à différenciation myéloïde (LAM), lymphoïde ou de syndromes myélodysplasiques. Un sous-type cytologique avec translocation récurrente t(8;21)(q22;q22)(AML1-ETO) a été individualisé dans 25% des LAM (classification OMS 2008).

De nombreux variants de cette translocation ont été décrits impliquant différents partenaires génétiques (39 décrits). Une seule publication décrit une translocation t(X;21)(p22;q22) chez un patient ayant une LAM de type M2 (LAM2) : le partenaire du gène AML1 est le gène PRDX4, appartenant à la famille des peroxyredoxines intervenant dans l’oxydoréduction et jouant un rôle dans l’activation de la voie NF-KappaB.

Nous rapportons ici le cas d’une patiente de 84 ans chez laquelle a été diagnostiquée une LAM de type M2 dont la caractérisation cytochimique montrait une expression faible de la myéloperoxydase. Le caryotype a permis d’identifier une translocation t(X;21)(p22;q22) (un cas publié, Zhang et al, Genes, Chromosomes and Cancer 2004). L’implication d’AML1 a été confirmée par l’hybridation in situ à l’aide de las sonde spécifique du gène. En revanche, l’hybridation à l’aide d’un BAC couvrant PRDX4 ne montre pas de cassure de ce gène, faisant supposer un variant moléculaire en cours de caractérisation.
Caractérisation du potentiel génotoxique du formaldéhyde chez le personnel hospitalier par la technique de Micronoyaux couplée à l’Hybridation In Situ en Fluorescence

Bouraoui S. (1), Brahem A. (2), Tabka F. (2), Mrizek N. (2), Saad A. (1), Elghezal H. (2)

(1) Laboratoire de Cytogénétique, de Biologie moléculaire et Biologie de la Reproduction, CHU Farhat Hached de Sousse - Tunisie
(2) Service de Médecine de travail, CHU Farhat Hached de Sousse - Tunisie

Introduction :
Plusieurs substances retrouvées dans le milieu professionnel présentent un caractère génotoxique, voir cancérogène. Le Formaldéhyde (FA), substance largement utilisée dans le laboratoire d’anatomo-pathologie, a été depuis longtemps incriminée dans l’apparition de plusieurs types de cancers. L’objectif de notre étude est d’évaluer le potentiel génotoxique du FA au sein des lymphocytes périphériques du personnel du laboratoire d’anatomo-pathologie via la technique de Micronoyaux (MNs) et de caractériser par la suite le contenu de ces MNs par l’utilisation de l’hybridation in situ fluorescente (FISH) afin de dévoiler l’éventuel effet anéuploïde de la substance en question.

Matériels et Méthodes
Les altérations chromosomiques consécutives à l’exposition professionnelle au FA ont été analysées au niveau des lymphocytes périphériques de 31 sujets exposés en comparaison avec 31 témoins appariés pour l’âge, le sexe et le mode de vie. L’évaluation des mutations chromosomiques a été réalisée à l’aide du test de MN avec blocage de la cytodièrèse suite au traitement avec la cytochalasine B (5µg/ml). Deux milles cellules binucléées ont été analysées. La FISH réalisée via l’utilisation de sondes tous centromères permettant de mettre en évidence la composante génétique des MNs.

Résultats
La fréquence de MNs chez les exposés était significativement plus élevée chez les sujets exposés que chez les témoins (49.27‰ ± 18.75 contre 7.08‰ ± 4.62, p < 0.05). La FISH couplée au test de MN avait démontré une augmentation significative du taux de MNs pourvus de centromères (C+MN) témoignant de l’action anéugène du FA (27.95‰ ± 9.9 contre 1.77‰ ± 0.3, p< 0.05).

En ce qui concerne le taux des MNs contenant des fragments chromosomiques acentromériques (C-MN), il était accru chez les exposés en comparaison avec les témoins, certes cette élévation est loin d’être significative.

Pour le taux des MNs monocentromériques (MNC1+), il était significativement plus élevé chez les exposés que chez les témoins

Conclusion
Nos résultats montrent que les MNs induits sur les lymphocytes périphériques par l’exposition professionnelle au FA sont consécutifs à des dysfonctionnements préférentiellement exercés au niveau du fuseau mitotique et non de l’ADN
Analyse du nombre de copie de DLEU2 et de DLEU7 dans la Leucémie Lymphoïde Chronique par PCR temps réel : comparaison à la FISH


(1) Service d’Hématologie Immunologie Cytogénétique, CH de VALENCIENNES
(2) Service d’hématologie Clinique, CH de VALENCIENNES
(3) U837 /CHRU de LILLE

Introduction :
La délétion 13q14 est l’anomalie cytogénétique la plus fréquente dans la leucémie lymphoïde chronique (LLC). DLEU2 et DLEU7 sont deux gènes localisés dans la zone minimale délétée caractérisée par analyse pangénomique. La délétion 13q14 (del13q) est recherchée par FISH en routine pour son intérêt diagnostique et pronostique. L’objectif de cette étude est de comparer la FISH, considérée comme la technique de référence, à la détection de la perte de DLEU2 et DLEU7 par PCR en temps réel.

Matériel et méthode :
39 patients atteints de LLC ont été inclus. La FISH a été réalisée avec un couple de sondes au loci 13q14 (D13S319) et 13q34 en tant que contrôle interne (Vysis Abbott Diagnostic) sur chromosomes métaphasiques et noyaux interphasiques. Le statut de délétion mono ou biallelique en 13q14 a ainsi été déterminé pour ces patients. Le seuil de positivité est fixé à 4% de noyaux en interphase. Pour la PCR en temps réel technique Copy Number (CN), l’ADN a été extrait sur le même prélèvement sanguin que celui utilisé en FISH. Cette technique a ciblé les gènes DLEU2 et DLEU7, et le gène de référence RNAseP (kit Copy Number Assays, Applied Biosystems).

Résultats :
La FISH a permis de mettre en évidence 23 patients (59%) présentant une del13q : 17 de type monoaallélique, 2 de type biallélique et 4 de type mono et biallélique. Les pourcentages des cellules avec délétions 13q varient de 13% à 94 % (moyenne 64%). L’étude d’une cohorte de témoins a permis de calculer les seuils de positivité ( moyenne +/-2 écarts type). Des ratios inférieurs à 1.71 et 1.76 ont donc été utilisés comme valeur seuil respectivement de la délétion de DLEU2 et de DLEU7. Une discordance FISH positive/CN négatif est observée dans 18% des cas pour DLEU2. Les 7 cas discordants présentent un pourcentage de cellules délétées inférieur à 27% en FISH. Une délétion de DLEU7 par CN est observée dans 4 de ces 7 cas discordants CN DLEU2 négatif/ FISH positif. En utilisant les 2 cibles, les résultats FISH/CN sont concordants dans 92 % des cas.

Conclusion :
La PCR en temps réel par technique de Copy Number peut constituer une approche rapide de détection de l’aneuploïdie dans la LLC.Toutefois, cette technique ne permet pas de mettre en évidence de sous-clones, ni de distinguer une délétion monoaallélique d’une biallélique en 13q14.
Survenue d’une leucémie lymphoïde chronique B (LLC-B) chez un enfant âgé de 12 ans après allogreffe de moelle non apparentée : seconde hémopathie ou hémopathie transmise par le donneur ?


(1) CHU Besançon, Service de Génétique, Histologie, BDR
(2) EFS Bougogne Franche-Comté, site de Besançon
(3) CHU Besançon, Service de d'Hématologie
(4) CH Chambéry, Laboratoire de Génétique Chromosomique

Introduction
La majorité des proliférations lymphoïdes B malignes survenant après allogreffe de cellules souches hématopoïétiques (CSH) sont induites par une infection EBV et favorisés par l'immunodépression du receveur.

Observation
Nous rapportons l’observation d'une LLC-B survenant après allogreffe de CSH non apparentée chez un garçon âgé de 12 ans. A l’âge de 8 ans, une allogreffe de CSH phénynoïdentique, de sexe différent, après conditionnement myéloablatif est réalisée pour une leucémie aiguë lymphoïde Phi positive en deuxième rémission complète. L’étude de la maladie résiduelle montre un transcrit ABL-BCR indétectable. Un chimérisme hématopoïétique total donneur est obtenu.

4 ans après l’allogreffe, une petite lymphocytose à 3,5 Giga/L composé de petits lymphocytes est décélée. L’immunophénotype montre la présence d’un clone LLC-B. Les caryotypes sanguins et médullaires ne montrent pas d’anomalie. Une analyse par FISH avec les sondes CEP12, LSI ATM, LSI D13S319, LSI TP53 et DXZ1 (Abott) montrent une délétion 13q14.3 dans 4% des noyaux des cellules de la donneuse. Un échantillon sanguin de la donneuse prélevé au moment de la greffe de moelle est analysé rétrospectivement et montre la présence d’une population lymphoïde B monoclonale. Les analyses en biologie moléculaire (réarrangement des chaines d'immunoglobulines et statut mutationnel) montrent qu’il s’agit du même clone chez le receveur et le donneur.

Une LLC-B stade A avec délétion 13q14.3 (62% des noyaux) est diagnostiquée chez la donneuse un an après le don de moelle.

Six ans après la greffe, la rémission complète se poursuit. La délétion 13q14.3 est retrouvée dans 66% des noyaux, la lymphocytose sanguine est à 9,1Giga/L.

Conclusion
A notre connaissance, il s’agit du 3ème cas de transmission d’une LLC par une allogreffe de CSH. Ces observations posent la question d’un immunophénotypage systématique sur sang périphérique des donneurs de plus de 40 ans.
INDEX DES AUTEURS

Abel C., 18
Abidli N., 78, 79, 136
Aboulfaraj J., 94
Aboura A., 47, 51, 53, 54, 55, 56, 65, 83, 85, 93, 95, 132
Adjagba MO., 114
Adouard V., 86
Afenjar A., 100
Aijouj R., 139
Aijjou R., 22
Ait Abdelkader B., 63
Ajina M., 125
Aloo MJ., 114
Albert M., 123
Alembik Y., 46
Amara I., 63
Amarouche K., 63
Ambert J., 104
Amice V., 126
Amouri A., 78, 79, 97, 98, 99, 136
Andrieux J., 25, 52, 55, 60, 67, 88, 95, 109
Antal C., 44
Antonarakis SE., 33, 80
Ardalan A., 30, 90, 118
Arnould C., 77
Arrufat S., 20, 135
Arslan-Kirchner M., 121
Arveiler B., 101
Astruc D., 46
Ayed W., 78, 79, 136
Ayivi B., 114
Azzi S., 111
Baala L., 81
Badens C., 36
Bailly M., 124
Barathon M., 88
Bardary A., 50
Barnetche T., 17
Barth M., 74
Bas C., 65
Basinko A., 73, 126, 133
Bastard C., 116
Baumann C., 54, 93
Baverel F., 105
Bay Jacques-O., 23
Bazin A., 30, 90, 118
Beaucamp F., 60
Beche C., 66
Bednarek N., 35, 84
Bellais E., 51
Ben Abdallah Bouhjar I., 82
Ben jemaa L., 87
Ben Khéïfa H., 103
Ben Othmen T., 136
Bena F., 33, 80
Benzacken B., 32, 47, 51, 53, 54, 73, 83, 95, 112
Bergere M., 124
Béri M., 92
Bére-Dexheimer M., 35
Bidat L., 57
Bilhou-Nabéra C., 24, 137
Billette de Villemeur T., 117
Billette T., 100, 102
Birembaut P., 25
Bitner-Blondeliz M., 64
Bitoun P., 67
Blanchet P., 48, 89
Blesson S., 76
Boirelle F., 123, 124
Bonneau D., 74
Bonnet C., 92
Bonnet-Dupreyon M.N., 66
Borie C., 137
Bottani A., 80
Bouayed Abdelmoula N., 79, 97, 98, 99
Boudjenah R., 124
Boughalem, 63
Bouhanna Ph., 53
Bouneau L., 41, 61
Bouquillon S., 95
Bouraoui S., 138
Bourc'his D., 8
Bourdoncele P., 32
Bourges-Petit E., 60
Bouri R., 102, 117
Bourrouillou G., 41, 61, 128
Bouvier R., 72
Bovo C., 133
Brahem A., 138
Brahem S., 125
Branger M.F., 77
Brasso S., 77
Bresson JL., 44, 59, 119, 140
Briand A., 109
Briand-Suleau A., 65
Briault S., 81
Brice A., 111, 112
Brisset S., 50, 56, 65, 85
Brun-Druc N., 33
Bucourt M., 32, 51
Bui T.H., 12
Buiting K., 33
Burglen L., 100, 102
Cacciatore S., 92
Caillay D., 101
Caillot D., 26
Callier P., 26, 41, 44, 55, 61, 110
Calmier P., 127
Calvès P., 41, 61
Cambon-Thomsen A., 128
Campos L., 130
Carel J.C., 83
Carpentier W., 111, 112
Carter N.P., 34
Chaabouni H., 87
Chaabouni M., 87
Chabay-Vichot C., 73
Chabrand S., 115
Chadli E., 94
Chambon P., 75, 113, 116, 120
Chantot-Bastaraud S., 54, 100, 102, 109, 111, 112, 117
Chassoux D., 132
Chataigner S., 105
Chatron P., 127
Chaussee J., 70
Chaz A.M., 48, 89
Chelloung N., 44, 55
Chemikli I., 136
Chevaller-Hélas F., 52
Chevreson MP., 92
Chiesa J., 77, 134
Chognot D., 46
Cholet A., 15, 108
Chokair O., 94
Christin-Maire S., 83
Clement P., 53
Clomes S., 35, 84
Cochat P., 67
Colas C., 112
Collin E., 74
Colleaux L., 34
Collonge-Rame MA., 59, 119, 140
Combier P., 23
Conan L., 41, 61
Copin H., 60, 88, 131
Cordier MP., 55, 66, 72
Cormier-Daire V., 34
Cornillon J., 130
Costa JM., 90
Coutes C., 89
Couchot J., 35
Coulet F., 112
Coulomb L’Herminé A., 56, 85
Courrel K., 90
Coussement A., 105
Couturier J., 20, 135
Crouzet L., 69
Dahoun S., 42
Daks A., 19
Damane M., 92
Damette A., 59, 119
Darboux RB., 114
Daudignan A., 22, 139
Encha-Razavi F.
Eymard-Pierre E.
Exbrayat C.
Deconinck E.
Decambron A.
Elloumi M.
de Vries B.
Elkhoury M.
de Braekeleer M.
Dayem-Quere M.
De Braekeleer E.

Ferrand C., 134
Ferfouri F., 123
Ferrand C., 140
Ferre D., 25
Fert-Ferrer S., 55, 140
Feucher P., 25
Fillon V., 19
Flori E., 14, 44, 46, 55
Fontaine M., 137
Fort D., 127
Fossoud C., 70
Francannet C., 115
Frébourg T., 75, 113
Fressart V., 54
Fricker M., 108
Gaillard D., 25, 84
Gaillard J.B., 77, 134
Galkina S., 19
Gammoudi A., 96
Gangbo FA., 114
Garnache-Ottou F., 140
Gaucherand P., 72
Gavillon N., 25
Gazzo S., 66
Geffroy S., 22
Geiss S., 44
Geneviève D., 48, 89
Gerard B., 32
Gérard M., 47, 93
Gilbert DuSSardier B., 67
Gill C., 44
Gillet F., 86
Gildenkrantz S., 31
Gillon E., 21
Gimelli S., 33, 80
Ginglinger E., 44
Girard F., 44
Girard M., 48, 89
Girard-Lemaire F., 46, 55
Giuliano F., 69, 70, 104
Giurgea L., 109
Goldenberg A., 75
Gollner J.-L., 44
Gondry J., 60
Goossens M., 65, 109
Gous L., 23, 45, 68
Goumy C., 45, 68
Graesslin O., 25
Grandchamp B., 60
Grégoire MJ., 92
Griene L., 63

Groupe Français de Cytogénétique Oncologique, 20, 135
Gruchy N., 15
Gruson N., 35, 84
Guediche N., 56, 65, 85
Guéganic N., 73, 133
Guermah H., 78, 79, 136
Guichet A., 74
Guillot H., 66
Guillot M., 75
Guy J., 26
Guyotat-Maréchal L., 75
Haddad V., 47, 50, 56, 83, 85
Hamamas S., 122
Hamel A., 64
Hannachi H., 82, 96
Hannechi H., 103
Haoud K., 45
Haquet E., 89
Hardizi H., 94
Hatem A., 103
Hdiji S., 136
Hediger Bonfantini J., 42
Herbaux C., 22, 139
Herbevin V., 86
Héron D., 112
Herry A., 133
Hervé N., 54
Heymann D., 64
Holder M., 67
Horovitz J., 13, 17, 43
Houtteman A., 112
Huin V., 75, 113
Ibala S., 125
Ingster O., 74
Ios C., 105
Isidor B., 64
Ittel A., 36, 107
Jacquet C., 102
Jeanidier E., 46
Jeanne N., 100
Joly-Hélas G., 55, 113, 116, 120
Jonveaux P., 35, 92
Jourdan E., 134
Julia S., 128
Kaltenbach S., 47, 51, 54, 83
Kanaan S., 60, 88, 131
Kara Terki A., 65
Karmous-Benallly H., 69, 70, 104
Karouche Y., 63
Keppi B., 115
Kerbrat W., 137
Keren B., 100, 102, 111, 112
Kern I., 42
Kervran D., 81
Khoury M., 35, 84
Kilani O., 78, 79, 136
Kjellén L., 64
Kleininger P., 30, 90, 118
Klibi M., 24
Kraoua L., 32
Krasikova A., 19
Kraus C., 64
Kremer V., 44, 46, 55
Labalme A., 18, 66, 67, 72, 82, 91, 95
Labeau-Gauzère C., 17
Lacombe D., 101
Lafon L., 25
Lai JL., 22
Lalaye A., 114
Lalaya F., 114
Lambert J.C., 69, 70, 104
Landais E., 25, 35, 84
Larosa F., 140
Schluth-Bolard C., 66, 67, 91
Schmidt P., 84
Schmitt E., 44
Schneider A., 48, 89
Segala J., 59, 119
Selva J., 53, 123, 124
Sennana H., 58
Serero S., 53
Sharp A.J., 33
Siffroi JP., 100, 102, 111, 112, 117
Sigaudy S., 104, 106
Simon-Bouy B., 57
Simon-Buy B., 55
Siwicka K., 64
Smiljnovic D., 32
Soler G., 11
Soleyan C., 100, 102, 117
Solly F., 130
Soubrier F., 112
Soulier A., 128
Stora H., 55
Suarez D., 126
Tabet AC., 47, 51, 54, 83, 93
Tabka F., 138
Tachdjian G., 50, 56, 65, 83, 85
Taine L., 13, 71, 73
Talmoudi F., 78, 79, 136
Tang N., 60
TaPhiThanh N., 25
Tapias S., 123
Tavernier E., 130
Tchirkov A., 23, 45, 68
Teisserre S., 104
ter Schiprost J.L., 77
Thauvin C., 110
Thomas S., 34
Till M., 18, 66, 67, 72, 76, 91
Torjmane L., 136
Tosca L., 50, 56, 65, 85
Tost J., 9
Touraine R., 18, 67, 86
Tournilhac O., 23
Toutain A., 76
Toutain J., 13, 17, 43, 71
Trabelsi M., 87
Tricot S., 139
Tron F., 116
Trost D., 30, 90
Vago P., 23, 45, 68
Valcin M., 137
Valduga M., 92
Van Tilbeurgh F., 57
Vassetzky YS., 24
Vekemans M., 34, 109
Verhoest P., 60
Verloes A., 64
Vermeesch J., 35
Verneau F., 92
Véronèse L., 23, 45, 68
Vialard F., 15, 53, 55, 123, 124
Vieillefond A., 20, 135
Vigouroux-Castera A., 41, 61
Viguié F., 132
Vincent M., 89
Vincent-Delorme C., 95, 109
Violet C., 84
Viot G., 76
von Kaisenberg C., 121
Wagner K., 69
Wainer R., 124
Wardi Y., 118
Warin D., 88
Whalen S., 109
Yonkeu Fonze F., 131
Zlotina A., 19