LLC et anomalies *MYC*Sous étude sur le comptage des anomalies

Match entre méthode classique, ISCN 2024 et IA

Florence Nguyen Khac Elise Chapiro

Méthode classique « entre les virgules »

The complex karyotype and chronic lymphocytic leukemia: prognostic value and diagnostic recommendations

Ludovic Jondreville¹ | Daphné Krzisch¹ | Elise Chapiro^{1,2} |
Florence Nguyen-Khac^{1,2} |
AJH, 2020

TABLE 1 Guidelines for counting aberrations in karyotypes

In all hematologic malignancies:

- Count one (1) aberration^a for each item between commas, in all clones and subclones^b
- Count a single change only once if it is present in several subclones^c
- Count each numerical change (including -Y, -X, +15)^d, balanced translocation, simple structural change and each complex structural change^e as one (1) aberration
- 4. Count each chromosome marker as one (1) aberration^a
- Count one (1) aberration for tetraploidy (92 chromosomes) or neartetraploidy (81-103 chromosomes)^f
- 6. Do not count constitutional aberrations^g

In CLL, additionally:

- Distinguish between a CK with three (3) to four (4) abnormalities and a high CK with five (5) or more abnormalities
- 8. -Y, -X and +15 have to be flagged up in the cytogenetics report^d
- Count one (1) aberration for FISH abnormalities [del(13)(q), +12, del (11)(q) and del(17)(p)] only if they are observed in the karyotype^h
- 10. CKs with +12,+19 have to be classified separately

ISCN 2024

Table 7. Counting chromosome abnormalities.

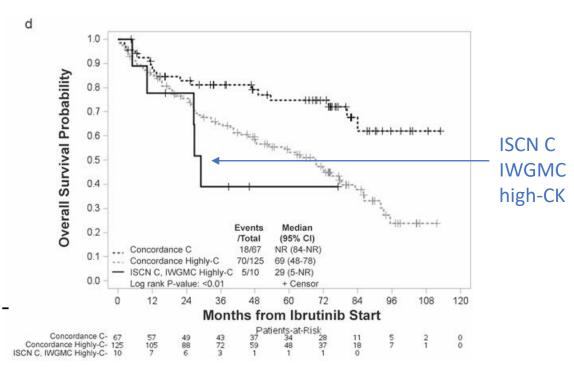
Abnormality Type	Examples	Abnormality count
Numerical gain	Trisomy Duplication of a derivative chromosome	1
Numerical loss	Monosomy, includes –Y	1
Balanced structural abnormality (no gain, no loss of chromosomal material)	Simple balanced translocation Complex balanced translocation (involving three or more chromosomes) Inversion Balanced insertion	1
Unbalanced aberrations involved one chromosome (leading to gain or loss of chromosomal material)	Isochromosome Deletion ^a Duplication ^a Additional material of unknown origin [add] Simple ring chromosome Isodicentric chromosome Homogeneously staining region ^b Double minutes Unidentified marker chromosome	1
	Tetrasomy of same chromosome Triplication or quadruplication Isoderivative chromosome	2
Unbalanced aberrations involved two or more chromosome	Unbalanced translocation Unbalanced insertion Derivative chromosome ^c Complex ring chromosome Isoderivative chromosome	2
Ploidy abnormalities	Multiplication of complete chromosome set (normal or aberrant)	1
Multiple clones (subclones or independent clones)	Count chromosome abnormalities in each clone and each new abnormality in the subclone(s) separately Number of chromosome abnormalities is determined by the total count of abnormalities in the entire sample	-
Constitutional abnormalities	Not included in the count; if aetiology unknown then include as above	0

a Includes multiples of one chromosome.

bAn hsr is considered to be one event for the purpose of counting abnormalities.

^cAbnormalities related to a derivative chromosome are not counted as additional. See example 38 in Table 8.

CORRESPONDENCE


Leukemia, 2024

CHRONIC LYMPHOCYTIC LEUKEMIA

Matthew R. Avenarius¹, Ying Huang², Adam S. Kittai [b², Seema A. Bhat², Kerry A. Rogers², Michael R. Grever², Jennifer A. Woyach [b²] and Cecelia R. Miller [b¹] Department of Pathology, The Ohio State University, Columbus, OH, USA. Division of Hematology, The Ohio State University, Columbus, OH, USA. Memail: cecelia.miller@osumc.edu

Comparison of karyotype scoring guidelines for evaluating karyotype complexity in chronic lymphocytic leukemia

- 456 patients, traités par ibrutinib
- Comparaison ISCN 2020 vs. IWGMC (Chun et al.)
- 11% de discordance sur la catégorie de complexité
 - $CK \ge 3$, 4 anomalies
 - High-CK ≥ 5 anomalies
- Corrélations à la survie globale depuis l'initiation de l'ibru
- -les ISCN High-CK ont une survie meilleure que les IWGMC CK (surestimation du nb d'anomalies)
- -les ISCN C ont une survie plutôt comparable aux IWGMC high-CK (sous-estimation du nb d'anomalies)

Prédiction de la survie globale moins robuste avec ISCN2020

Objectifs

1- Comparaison des méthodes de décompte dans la LLC : Classique vs. ISCN 2024

Discordances entre les lecteurs : méthode plus reproductible que l'autre ?

Discordances entre les 2 méthodes : impact sur la catégorie de complexité, corrélations avec la survie globale

2- Développement d'un outil d'IA de comptage automatique

Discordances entre lectures manuelles et IA: nombre d'erreurs humaines de comptage?

A. Malek Mouazer Edgar Degroodt

Méthodes

Cohorte LLC MYC GFCH, n=110

+ cohorte LLC sans anomalie MYC (Pitié-Salpêtrière), n=167

Exclusion des caryotypes normaux → TOTAL : 209 caryotypes

Décompte manuel selon les 2 méthodes : chaque formule est comptée par 3 lecteurs indépendants

Nasséra Abermil

Audrey Bidet

Elise Chapiro

Baptiste Gaillard

Emilie Klein

Christine Lefebvre

Nathalie Nadal

Florence Nguyen Khac

Dominique Penther

Lauren Veronese

Méthodes

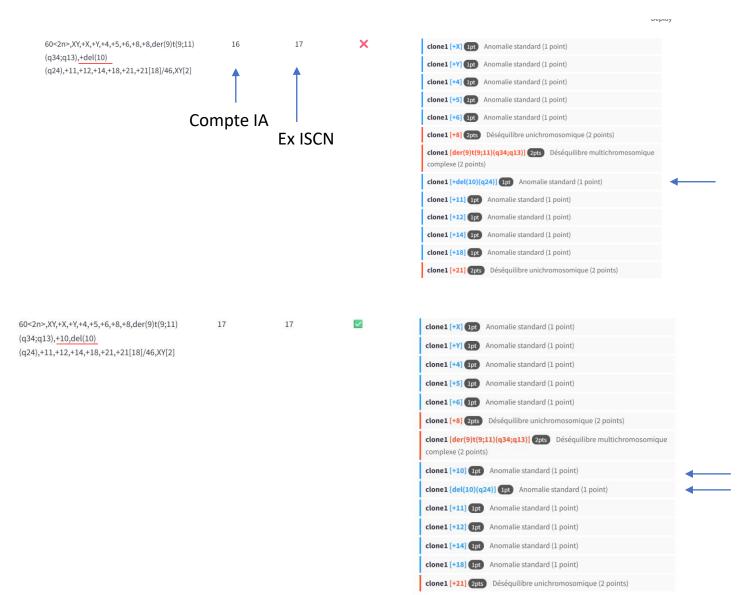
Cohorte LLC MYC GFCH, n=110

+ cohorte LLC sans anomalie MYC (Pitié-Salpêtrière), n=167

Exclusion des caryotypes normaux → TOTAL : 209 caryotypes

• Développement d'un outil de comptage automatique avec les 2 méthodes En cours, codage des règles pour l'ISCN2024 à revoir

Entrée : formule ou liste de formules (excel)


Sortie : décomptes avec détails

Test de l'outil avec les exemples de l'ISCN2024, Ex 37 page 94

60<2n>,XY,+X,+Y,+4,+5,+6,+8,+8,der(9)t(9;11)(q34;q13),+del(10)(q24),+11,+12,+14,+18,+21,+21

10 trisomies, 2 tétrasomies, 1 chromosome dérivé, une délétion → 17 anomalies : on compte 2 pour le +del(10)

Nécessité d'harmoniser l'écriture des formules et de bien expliciter les règles