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Cytogenetics in the management of acute myeloid leukemia and histiocytic/dendritic cell 
neoplasms: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH)  
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A B S T R A C T   

Genetic data are becoming increasingly essential in the management of hematological neoplasms as shown by 
two classifications published in 2022: the 5th edition of the World Health Organization Classification of Hem-
atolymphoid Tumours and the International Consensus Classification of Myeloid Neoplasms and Acute Leuke-
mias. Genetic data are particularly important for acute myeloid leukemias (AMLs) because their boundaries with 
myelodysplastic neoplasms seem to be gradually blurring. The first objective of this review is to present the latest 
updates on the most common cytogenetic abnormalities in AMLs while highlighting the pitfalls and difficulties 
that can be encountered in the event of cryptic or difficult-to-detect karyotype abnormalities. The second 
objective is to enhance the role of cytogenetics among all the new technologies available in 2023 for the 
diagnosis and management of AML.   

Introduction 

Acute myeloid leukemia (AML) is the most common form of acute 
leukemia in adults and has a low overall survival (OS) rate (5-year 
survival rate = 24%). The incidence rate of AML is approximately 4 
cases per 100,000 adults and 0,7 cases per 100,000 children annually 
[1–3]. The incidence increases with age, with a median age at diagnosis 
of 68 years [1]; thus, the aging of the population leads us to anticipate an 
increase in the incidence of AMLs in the coming years. 

AML is a heterogeneous group of hematological neoplasias charac-
terised by malignant clonal expansion of myeloid-committed progenitor 
cells coupled with differentiation arrest. Since the first description of 
translocation in AML [4], advances in genomic techniques have 
improved our understanding of the processes of leukemogenesis in 
relation to cytogenetic and/or molecular abnormalities. Currently, it is 
estimated that approximately 50% of adult patients and 75% of pediatric 
patients have chromosomal abnormalities (CAs) and that > 95% of pa-
tients have at least one mutation. Given the importance of genetic ab-
normalities in the development of AML, their detection is critical for 
diagnosis and prognosis. 

In 2022, two major classifications including AML were published: the 
5th edition of the World Health Organization Classification of Hema-
tolymphoid Tumours (WHO-HAEM5) [5] and the International 
Consensus Classification of Myeloid Neoplasms and Acute Leukemias 
(ICC-2022) [6]. Although quite similar, these two classifications have 
some differences (Table 1) that sometimes make it difficult to reach a 
consensus on the diagnosis and interpretation of genetic results. 

Regarding the prognosis, the distribution of CAs in AML is age- 
related: recurrent balanced translocations with a favourable prognosis 
are more frequent in children and young adults, whereas abnormalities 

with an intermediate or unfavourable prognosis are more frequent in 
adults aged >60 years [2]. The 2022 European LeukemiaNet 
(ELN-2022) recommendations [2] are among the most widely used 
prognostic classifications. Blastic plasmacytoid dendritic cell (pDC) 
neoplasm (BPDCN) has been introduced into the ‘Histiocytic and den-
dritic cell neoplasms’ chapter of the current WHO-HAEM5 and contains 
a new subgroup referred to as mature pDC proliferation (MPDCP) 
associated with myeloid neoplasms [5]. 

We herein present the most relevant CAs in terms of diagnosis and/or 
prognosis in AML and pDC disorders, as listed in Table 2. We conclude 
by focusing on new cytogenomic techniques, such as those based on next 
generation sequencing (NGS) and optical genome mapping (OGM), 
which could become the gold standard of testing and replace chromo-
somal banding analysis (CBA) and FISH in the near future. 

1. Cytogenetic abnormalities 

1.1. AML 

1.1.1. AML with recurrent cytogenetic abnormalities 

1.1.1. 1. t(15;17)(q24;q21)/PML::RARA and other 17q21/RARA-r 
AMLs. The recurrent translocation t(15;17)(q24;q21), observed in M3/ 
M3v forms of the French-American-British (FAB) classification and 
leading to PML::RARA fusion, is specific for acute promyelocytic leu-
kemia (APL) [5,6]. This translocation is found in 80–90% of patients 
with APL [7,8] and leads to the expression of a functional PML::RARA 
chimeric protein. APL with PML::RARA fusion accounts for 5–10% of 
adult and pediatric AMLs. The clinical presentation may be aggressive 
and complicated by a life-threatening coagulation disorder. Diagnosis 
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Table 1 
Comparison of cytogenetic abnormalities in WHO-HAEM5 and ICC-2022  
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must be rapid with demonstration of t(15;17)(q24;q21) or PML::RARA 
fusion by fluorescence in situ hybridisation (FISH) and/or molecular 
techniques. After the initial critical stage, the use of all-trans retinoic 
acid (ATRA) in combination with arsenic trioxide (ATO) or chemo-
therapy allows the achievement of OS and progression-free survival 
rates that are superior to those of other AMLs. 

Besides the classical t(15;17), complex or unbalanced rearrange-
ments or chromosomal insertions of RARA into PML or PML into RARA 
can occur [9]. In a retrospective analysis, Gagnon et al. [7] found that 
2.3% of cases had three- or four-partner translocations and 0.7% had 
cryptic insertions. The use of dual-colour/double-fusion FISH probes 
with filter-by-filter reading by an experienced cytogeneticist is 

Table 2 
Cytogenetic abnormalities in acute myeloid leukemia (AML) and Plasmactoid dendritic cell disorders  

(continued on next page) 
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Table 2 (continued ) 

(continued on next page) 
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recommended to identify these atypical cases. The use of molecular 
techniques should also include a search for rare or even unknown 
transcriptional isoforms. Even in the case of a classic t(15;17)(q24;q21), 
confirmation by reverse transcription–polymerase chain reaction is 
mandatory to identify the fusion transcript type and thus allow molec-
ular follow-up [10]. 

Additional cytogenetic abnormalities (ACAs) are observed in 
approximately one-third of patients. The most frequent ACAs are +8, 
− 7/7q, de(l9q), +11, and +21 [7,11], and their prognostic impact is still 
being debated [12]. 

Other RAR rearrangements (RARr) have been described in about 2% 
of patients with APL. These patients mainly present with an atypical M3 
form. The RARr is mainly an RARAr with a non-PML partner recognised 
as APL, along with a variant RARA translocation (WHO-HAEM5) or APL 
with other RARAr [5,6]. The response to ATRA and ATO depends on the 
partner gene [10]. Very rare APLs present with rearrangement of RARB 
(3p24.2) or RARG (12q13.13) genes and are resistant to ATRA [13]. 
PML::RARA-negative APL requires an extensive genetic characterisation 
with careful chromosomal banding analysis (CBA); FISH with RARA, 
RARB, and RARG probes (if available); and, if possible, 
whole-transcriptomic or OGM analyses [2,9,10,14]. 

1.1.1.2. Core binding factor (CBF) abnormalities: t(8;21)(q22;q22.1)/ 
RUNX1::RUNX1T1 and inv(16)(p13.1q22)/t(16;16)(p13.1;q22)/CBFB:: 
MYH11. AML with t(8;21)(q22;q22.1)/RUNX1::RUNX1T1 and AML 
with inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/CBFB::MYH11 are 
referred to as CBF leukemias and are mostly observed, respectively, in 
the M2 and M4 with abnormal eosinophils (M4Eo) FAB subtypes. They 
represent 10% to 15% of adult AMLs, are more frequent in adolescents 
and young adults, and have a favourable prognosis [2,5,6,13]. 

RUNX1::RUNX1T1 and CBFB::MYH11 fusions lead to alternative 
DNA binding and abnormal cellular localisation of CBF, respectively, 
resulting in transcription disruption that causes maturation arrest [15]. 

ACAs are detected in up to 60% of patients with CBF-AML [16]. Two 
or more ACAs are found in 20% of patients with CBF-AML [16]. Loss of a 
sex chromosome and del(9q) are the most frequent ACAs in patients 
with t(8;21)(q22;q22.1). By contrast, +22 is the most frequent ACA 
associated with inv(16)/t(16;16), followed by +8 and +21. Addition-
ally, 3′CBFB (+/− 5’MYH11) deletion can be found in 3–8% of patients 
and poses a challenge for FISH interpretation [17,18]. The association of 
a CBFB::MYH11 fusion with a high-risk CA, as defined by the ELN, is rare 
(0.3%) [19]. Although the presence of ACAs does not alter the favour-
able prognosis of these entities according to the ELN-2022, several 

studies have seemed to show an impact for some of them. In patients 
with t(8;21), loss of Y appears to be associated with poorer OS [20]. 
Conversely, +22 seems to be associated with a better outcome for pa-
tients with CBFB::MYH11 AML [20,21]. 

The number of mutations is higher in AML with t(8;21) than in AML 
with inv(16) and is also higher in adults than children. RTK/RAS sig-
nalling mutations are the most common variants observed, and such 
mutations include the KIT, NRAS, and FLT3 genes. FLT3 and KIT mu-
tations have been associated with a slightly poorer prognosis than WT1 
and NRAS mutations [22–24]. Nevertheless, according to the ELN-2022, 
concomitant mutations do not change the risk categorisation [2]. 

1.1.1.3. 11q23/KMT2A rearrangements. KMT2A (formerly MLL) en-
codes a transcriptional coactivator of specific target genes, including 
many of the HOX family genes, and plays an essential role in early 
development and hematopoiesis. KMT2A rearrangements (KMT2Ar) 
occur in 2%–5%, 15–20%, and 47–55% of adult, pediatric, and infant 
AMLs, respectively. KMT2Ar is mainly associated with monoblastic/ 
monocytic acute leukemias. 

In the WHO-HAEM5 classification, KMT2Ar are now combined into a 
single entity. However, the ICC-2022 maintains a distinction between 
AML with t(9;11) rearrangement and AML with other KMT2A partners 
[5,6]. 

At least 94 partners have been identified to date. A genotype/ 
phenotype correlation exists between the KMT2A translocation partner 
and the clinical subtypes of leukemia or the age of occurrence. MLLT3 
(AF9) is the most frequent partner in adult and pediatric AMLs, while 
MLLT10 (AF10) is the main partner of KMT2A in infant AMLs. In more 
than 70% of patients with AML, the KMT2Ar involves MLLT3 (AF9), 
MLLT10 (AF10), ELL, AFDN (AF6, MLLT4), ENL, or SEPT6 [25–29]. 

The ELN-2022 states that in adults, t(9;11)(p21.3;q23.3)/KMT2A:: 
MLLT3 is associated with an intermediate prognosis while other KMT2Ar 
are associated with a poor prognosis [2]. In children, in addition to t 
(9;11)(p21.3;q23.3)/KMT2A::MLLT3, t(11;19)(q23;p13) with either ELL 
(19p13.1) or MLLT1(ENL) (19p13.3) partners are associated with an 
intermediate prognosis [30]. 

ACAs are found in about half of KMT2Ar, with +8 being the most 
prevalent followed by +21q, +6, and +19 [29]; these ACAs do not 
impact OS. KMT2Ar AML presents with a low mutation burden, with 
NRAS and KRAS being the most commonly mutated genes [29]. 

Given the myriad of partners and the prognostic consequences of 
KMT2Ar, FISH with a separation probe and/or a molecular technique 
capable of detecting all partners of KMT2A is mandatory. Particular 

Table 2 (continued ) 
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attention must be paid to rearrangements involving MLLT10 (10p12), 
which cannot be a simple reciprocal translocation due to the opposite 
centromeric/telomeric orientation of these genes. Complex rearrange-
ments frequently produce an in-frame KMT2A::MLLT10 fusion of these 
two genes with an opposite orientation. They can implicate a third 
breakpoint on the 11q region or a third chromosome [30]. The molec-
ular insertion must be searched with a KMT2A/MLLT10 double fusion 
probe and/or a suitable molecular analysis or RNA sequencing. Simi-
larly, FISH fails to detect inv(11)(q23q23)/KMT2A::USP2 in most pa-
tients, leading to an underestimation of its frequency [31]. Because this 
fusion gene derives from a short inversion within 11q23, the FISH 
profile may mimic a normal pattern. The alteration is only observed if 
the inversion is accompanied by a 3′ KMT2A deletion. Notably, 3′ 
KMT2A deletion at the chromosomal breakpoint occurs in approxi-
mately 10% of KMT2r AMLs. 

1.1.1. 4. t(6;9)(p23;q34)/DEK::NUP214. The t(6;9)(p23;q34) trans-
location leading to DEK::NUP214 fusion is a rare recurrent genetic ab-
normality detected in 0.9% to 1.8% of AMLs, mainly occurring in older 
children and young adults (median age of 12 and 35 years, respectively) 
[8,32,33]. These AMLs frequently show multilineage dysplasia and, in 
about half of cases, peripheral blood(PB)/bone marrow(BM) basophilia 
[5,6,34]. t(6;9) is most often the only clonal CA and is strongly associ-
ated with FLT3-ITD mutation and a poor prognosis [2,6,33–35]. 

1.1.1. 5. t(9;22)(q34;q11)/BCR::ABL1. AML with t(9;22)/BCR::ABL1 
fusion is now included as a permanent entity in the WHO-HAEMrevision 
[5]. Distinguishing between de novo AML with t(9;22) and chronic 
myeloid leukemia in a primary myeloid blast crisis can be difficult, 
requiring at least 20% blasts for diagnosis [5,6]. Neuendorff et al. pro-
posed an algorithm for primary differential diagnosis. After excluding 
acute leukemia of ambiguous lineage by flow cytometry, a thorough 
history and physical examination is performed. In particular, unex-
plained leucocytosis, basophilia, and/or splenomegaly point toward the 
diagnosis of chronic myeloid leukemia blast crisis rather than AML. By 
contrast, prior signs of myelodysplastic syndrome (MDS) in PB or BM 
may support the diagnosis of (secondary) AML. Detection of 
p190-transcript and the presence of any BCR::ABL1 fusion signal in <
100% of metaphases supports the diagnosis of AML rather than chronic 
myeloid leukemia [36]. In most cases, t(9;22)(q34.1;q11.2) is associated 
with ACAs such as − 7 and +8, and a complex karyotype (CK). The re-
ported incidence of AML with t(9;22) is < 1% [8,37]. These AMLs are 
associated with an adverse prognosis [2]. 

1.1.1.6. 3q26/MECOM rearrangements. The oncogene MECOM (MDS1/ 
EVI1 complex) is located at 3q26.2. In the WHO-HAEM5, AML with 
MECOM rearrangements (MECOMr) include not only the classical inv(3) 
(q21q26.2) and t(3;3)(q21;q26.2) but also AML with other 3q26.2/ 
MECOMr [5]. 

In inv(3)(q21q26.2) and t(3;3)(q21;q26.2), the partner gene is 
GATA2, located at 3q21, and the MECOMr results in a juxtaposition of 
the distal GATA2 enhancer (G2DHE) next to the MECOM oncogene, 
leading to MECOM overexpression and GATA2 haploinsufficiency [38]. 
In other MECOMr, the most frequent partner genes are RUNX1 (21q22) 
and ETV6 (12p13). Other MECOMr leading to MECOM overexpression 
have been described: t(2;3) with several breakpoints on 2p, and t 
(3;3)/inv(3)/ins(3;3) not involving 3q21, t(3;5), t(3;6), t(3;7), t(3;8), or 
t(3;17) [39–41]. Gao et al. recently demonstrated MECOM over-
expression in myeloid neoplasms with non-classic MECOMr [39]. 

The reported incidence of AML with inv(3)(q21q26.2)/t(3;3)(q21; 
q26.2) and MECOMr is 1 and 2% [8,42,43], and this percentage doubles 
when all MECOMr are included [8]. Monosomy 7, and del(7q) are the 
most common ACAs [44]. MECOMr AMLs are readily diagnosed by a 
MECOM break-apart FISH probe and are associated with a poor prog-
nosis [2]. 

1.1.1. 7. t(8;16)(p11.2;p13.3)/KAT6A::CREBBP. AML with trans-
location t(8;16)(p11;p13) is a very rare abnormality (< 1% in adults and 
children, mainly neonates) resulting in KATA6::CREBBP gene fusion 
[45]. More than one-third of adult cases are post-cytotoxic therapy AML 
(pct-AML) [46]. Female predominance is observed, particularly in 
pct-AML. All patients present with acute monoblastic or myelomono-
cytic leukemia, frequently with erythrophagocytosis. Clinically, AML 
with t(8;16) is commonly associated with extramedullary disease and 
disseminated intravascular coagulation mimicking APL. Indeed, severe 
bleeding complications are the main cause of early death. 

AML with t(8;16) in adults is associated with an adverse prognosis 
[2,46]. The prognosis is intermediate in children. Interestingly, 
one-third of neonates undergo spontaneous remission, and half of them 
remain in continuous remission [47]. 

1.1.1.8. 11p15/NUP98 rearrangements. Although rare (3%–5% of pe-
diatric AMLs), 11p15 rearrangements involving the NUP98 gene 
(NUP98r) are better known in children than in adults. Multiple partners 
have been described. The most frequent is NSD1; it is involved in the 
cytogenetically cryptic t(5;11)(q35;p15) [48], which may be associated 
with +8 [49]. The other most common translocation involves KDM5A 
(JARID1A) (12p13.3), which may be difficult to identify on CBA [50]. 
NUP98::KDM5A occurs in 2% of all pediatric AMLs (10% of pediatric 
cases of acute megakaryoblastic leukemia (AMKL)) [25,50,51]. Xie et al. 
recently reported NUP98r in 2.5% of adult patients with AMLs, of whom 
> 50% showed cryptic translocations detected only by FISH [52]. In this 
context, FISH using an NUP98 break-apart probe is essential for the 
diagnosis of pediatric AML [49]. In adults, the morphologic, immuno-
phenotypic, cytogenetic, and molecular features of AML with NUP98r 
are not well documented, and it would be important to include NUP98 
FISH testing in adult cohorts to clarify the incidence, partner genes, and 
molecular profiles of this entity. Notably, commercial NUP98 probes are 
flanking distant dual-colour probes, and the interpretation of interphase 
FISH results alone can be difficult. 

NUP98::NSD1 and NUP98::KDM5A are associated with a poor 
prognosis [53]. The prognosis of other rare NUP98r has not yet been 
established. In adults, only isolated case reports and series focusing on t 
(5;11)(NUP98::NSD1) [54] and t(7;11)/NUP98::HOXA9 [55] have been 
reported. Although AMLs with NUP98r in adults were associated with a 
poor prognosis in all previous studies, these AMLs are assigned in the 
intermediate risk category in ELN-2022[2]. 

1.1.1.9. 12p abnormalities including the rare t(7;12)(q36;p13)/ETV6:: 
MNX1. Abnormalities of the short arm of chromosome 12 (12p) have 
been associated with a poor prognosis in children [56,57]. Among 12p 
abnormalities, the rare, subtle, and often cryptic t(7;12)(q36; 
p13)/ETV6::MNX1 has only been described in infants, with an incidence 
of 4.3% [58]. Because of the disparity of 7q molecular breakpoints, and 
the possibility of variant translocations, cryptic insertions, or deletion on 
the derivative 7q, FISH testing or RNASeq could be iof interest with 
respect to the transcript ETV6::MNX1 [58,59]. 

The major ACA associated with this translocation is +19, which is 
found in 86% of cases. t(7;12)(q36;p13) is associated with an adverse 
prognosis [56,57] and a high relapse rate (77%) [58]. Therefore, FISH 
screening should be mandatory in infants under 2 years of age, espe-
cially those with +19 [59,60]. 

1.1.1. 10. inv(16)(p13.3q24.3)/CBFA2T3::GLIS2. Cryptic inversion of 
chromosome 16, inv(16)(p13.3q24.3)/CBFA2T3::GLIS2, was identified 
in 27% to 31% of non-Down Syndrome (DS) pediatric AMKL cases in 
previous studies [61,62]. Although half of reported cases were AMKL, 
this abnormality is not strictly limited to AMKL [63]. The median age is 
1.5 years (range: 0.5–4 years), and patients show a female predomi-
nance and a poor prognosis [51,64,65]. Non-AMKL CBFA2T3::GLIS2 
AMLs are mostly observed in older children (median age, 12.4 years) 
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and also have a poor prognosis. Only half of patients with CBFA2T3:: 
GLIS2 AML achieve a complete response, and OS rates are very low (<
30%) [51,64,66]. 

ACAs such as chromosomal gains that lead to hyperdiploid karyo-
types (mainly 47–49 chromosomes with +3 present in 20% of cases, 
followed by +21 and +Y) can be found in patients with CBFA2T3::GLIS2 
AML [51,66]. Interestingly, CBFA2T3::GLIS2 AML has a specific 
immunophenotype characterised by high CD56 expression and low or no 
expression of HLA-DR, CD45, or CD38 antigens [66]. 

1.1.1. 11. t(16;21)(q24;q22)/RUNX1::CBFA2T3. The t(16;21)(q24; 
q22)/RUNX1::CBFA2T3(RUNX1T3) is a rare but recurrent CA [67]. One 
international collaborative study collected 23 cases, representing 0.2% 
of all pediatric AMLs [68]. The patients’ median age was 6.8 years. ACAs 
were present in 85% of cases (+8, 42%;− Y, 43%). Overall, the outcomes 
were good, with a 0% cumulative incidence of relapse and a 4-year 
event-free survival rate of 77%. 

AMLs with t(16;21)/RUNX1::CBFA2T2 mimic AMLs with t(8;21) 
(q22;q22)/RUNX1::RUNX1T1 in terms of morphology, immunopheno-
type, gene expression profile, and response to therapy [69]. 

1.1.1. 12. t(16;21)(p11;q22)/FUS::ERG. The t(16;21)(p11;q22) lead-
ing to FUS(16p11)::ERG(21q22) transcript is a very rare entity. This 
entity is mainly found in young adults (median age of 30 years) [70] and 
represents 0.4% of pediatric AMLs (median age of8.5 years) [68]. The 
prognosis is dismal (4-year event-free survival rate of 7%). In one study, 
ACAs were present in 71% of cases; they were mainly described as ‘CK’ 
and included +8 (19%) and +10 (13%) [68]. 

1.1.1. 13. t(1;22)(p13;q13)/RBM15::MLK1(MRTFA). The t(1;22)(p13; 
q13) translocation is a very rare abnormality (0.3% of pediatric AMLs) 
involving the RBM15 (OTT) and MKL1 (MAL) genes, which are located 
at 1p13.3 and 22q13.2, respectively. RBM15::MLK1 AML only occurs in 
pediatric AMKLs (median age, 0.7 years; 5–10% of non-DS-AMKLs) [56, 
64,71,72]. This entity is associated with an intermediate outcome [51, 
65]. Reverse transcription–polymerase chain reaction or FISH analysis 
for RBM15::MLK1 is essential for completion of CBA [64] because 
myelofibrosis can frequently lead to a karyotyping failure. Notably, a 
high proportion of normal metaphases can be seen in the CBA; these 
mainly present as a few ACAs with duplication of der(1)t(1;22) and 
gains of chromosomes 2, 6, 19, and 21, resulting in hyperdiploid kar-
yotypes [64,71]. 

1.1.2. AML with cytogenetic abnormalities associated with MDS 
The WHO-HAEM5 defines the entity ‘AML, myelodysplasia-related/ 

AML-MR’, replacing the former ‘AML with myelodysplasia-related 
changes (AML-MRC)’. In addition to the main changes to the defini-
tion (i.e. removal of morphological criteria and introduction of molec-
ular abnormalities based on a set of eight genes), the definition also 
includes an update of the CA [5]: from the previous edition [32] only CK 
and unbalanced abnormalities remain. The ICC-2022 [6] also in-
dividualises a category according to cytogenetic abnormalities sufficient 
for the diagnosis of ‘AML with MDS-related cytogenetic abnormalities’ 
(Table 1). Both classifications contain a CK; chromosomes 5, 7, 12, and 
17 unbalanced abnormalities; and isodicentric chromosome Xq (idic 
(Xq13)). 

1.1.2.1. Chromosome 7 abnormalities. The most frequently reported 
autosomal monosomy in patients with AML is − 7 (5% of AMLs in adults 
aged < 60 years) [8,73]. It is consistently associated with a poor prog-
nosis [8,74]. In children, it should prompt a search for a genetic pre-
disposition (see joint article). 

Isolated del(7q) is less common in AML (approximately 2% of cases) 
[8]; it is more often part of a CK and associated with previous exposure 
to carcinogenic agents. Whereas the UK Medical Research Council 

guidelines [8] classify patients with del(7q) into the unfavourable risk 
group, the ELN-2022 [2] classifies them into the intermediate-risk 
group. Haploinsufficiency of tumour suppressor genes on chromosome 
7 has been hypothesised as the mechanism underlying the pathogenesis 
of del(7q). Several studies have characterised commonly deleted regions 
and identified EZH2, SAMD9L, CUX1, MLL3, and DOCK4 as possible 
candidates [75]. 

1.1.2.2. Chromosome 5 abnormalities. Approximately 5–10% of patients 
with AML harbour a 5q abnormality (monosomy 5, del(5q), or add(5q)) 
[8]. In contrast to MDSs, isolated del(5q) is a poor prognostic marker in 
AML, often denoting secondary AML arising from prior MDS. Two 
commonly deleted regions at 5q31 and 5q33 have been reported to be 
minimally necessary. These deletions cause loss of a large chromosomal 
region encompassing more than 30 genes, resulting in disease through 
haploinsufficiency of one or more genes including RPS14. Most del(5q) 
cases are often as part of a CK. Isolated del(5q) in AMLs appears to be a 
rare phenomenon and has not been well characterised. 

1.1.2.3. Chromosome 17 abnormalities and AML with TP53 mutations. 
Chromosome 17 abnormalities (monosomy, deletion 17p, or i(17q)), 
which result in loss of TP53, are seen in approximately 5% of patients 
with AML, mainly adults [76]. TP53, located on 17p13, encodes the 
tumour suppressor protein p53, which is essential for cell cycle control 
and the DNA damage response. Although the WHO-HAEM5 and 
ICC-2022 state those chromosome 17 abnormalities are 
myelodysplasia-related, only the ICC-2022 identifies an entity with 
mutated TP53. TP53 mutations occur in approximately 10% of patients 
with AML, and this frequency increases to about 30% in patients diag-
nosed with pct-AML [77]. Abnormalities of 17p and/or mutated TP53 
are strongly associated with CKs, with a frequency reaching 60% in 
patients with mutated TP53 [78]. 

Loss-of-function mutations and deletions of TP53 are associated with 
a very poor prognosis because of high refractoriness to conventional 
chemotherapy. Curiously, TP53 is usually not mutated in patients with i 
(17q), but outcomes in these patients remain poor. This finding suggests 
that the adverse impact of 17p abnormalities may be attributable to 
either TP53 loss or TP53 mutation [79]. 

Consistent with this poor outcome, TP53-mutant AMLs are classified 
as poor risk in the ELN-2022. Notably, the outcome of patients with bi- 
allelic TP53 alterations is generally worse [5]. 

In rare cases, TP53 mutations can be germline (Li-Fraumeni syn-
drome), and AMLs with a germline TP53 variant are classified as 
myeloid neoplasms with a genetic predisposition. 

1.1.2.4. CKs. Currently, all the prognostic classifications (except the 
UK Medical Research Council) define a CK as ‘three or more unrelated 
chromosomal abnormalities’ [80]. The ELN-2022 [2] also specifies in 
the definition the absence of recurrent translocations or inversions (t 
(8;21), inv(16) or t(16;16), t(9;11), t(v;11)(v;q23.3), t(6;9), inv(3) or t 
(3;3), t(9;22)). 

A CK was observed in approximately 8% of pediatric cases in the 
BFM98 trial [57] and in approximately 10%–12% of adult cases [8,42]. 
The incidence of a CK is also higher in patients older than 60 years (up to 
23%) [81] with secondary AML (25%) or pct-AML (26.9%) [82]. 
Although CK has been associated with poor outcomes in adult AML, its 
prognostic value in pediatric AML remains controversial [56,57]. The 
vast majority of CKs are also TP53-mutated. 

It should be noted that in the ELN-2022, CK clearly excludes 
hyperdiploid karyotypes with three or more trisomies (or polysomies) 
without structural abnormalities [2]. 

1.1.2.5. Monosomal karyotype (MK). In 2008, Breems et al. defined an 
MK in AML for the first time [44]. An MK corresponds to two or more 
autosomal monosomies or a single autosomal monosomy combined with 
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at least one structural CA (excluding markers or rings and CBF abnor-
malities). Monosomy 7 is by far the most frequent chromosomal loss 
[83]. Most, but not all, MKs are CKs: 70% of CKs are MKs [44]. MKs 
account for 13% of all patients with AML and 22% of ≥ 60-year-old 
patients with AML [44,84]. An MK is independently associated with 
an unfavourable outcome and is included in the ELN-2022 [2]. MKs 
represent approximately 3% of cases of pediatric AML, but their prog-
nostic value has not been established. In contrast to a UK research group 
[56], a German group found that MKs were associated with a poor 
prognosis, even after excluding monosomy 7 [57]. 

1.1.2. 6. idic(X). More frequent in patients with MDS, idic(X) has been 
reported in a few adult patients with AMLs, usually secondary to MDS. 
The idic(X)(q13) is often an isolated abnormality, although one or more 
copies of the idic may be present in the same cell. This suggests that idic 
(X)(q13) may be involved in early leukemogenesis. It is more often 
detected in women [85]. 

1.1.2.7. Other CAs. Deletion of the short arm of chromosome 12 (del 
(12p)) is a rare abnormality in adult AML but is not well defined. 
Conversely, 12p abnormalities in children have been associated with a 
poor outcome [56,57], as reviewed by Quessada et al. [30]. Some ab-
normalities are only described by one of the classifications: del(11q) and 
− 13/del(13q) are mentioned in the WHO-HAEM5, while +8 and del 
(20q) appear only in the ICC-2022. Their frequency is low (often < 1%), 
and they are classified into the intermediate-risk group [2]. 

1.1.3. AML with normal karyotype and molecular abnormalities 
A large subset of AML (approximately 40%–50% of adult AML and 

25% of pediatric AML cases) is cytogenetically normal (CN-AML). Pa-
tients with CN-AML are considered to be at intermediate risk, but these 
AMLs actually constitute a heterogeneous group in which patient out-
comes are highly variable because cryptic CAs associated with a poor 
prognosis can be found, mainly in children (see above). In recent years, 
next-generation sequencing (NGS) has made a considerable contribution 
to our understanding of this CN-AML group. In adults with CN-AML, the 
most prevalent mutations are identified in the NPM1, FLT3, CEBPA, 
NRAS, WT1, and RUNX1 genes. In the pediatric TARGET-AML cohort, a 
specific mutational landscape of CN-AML was characterised by a higher 
prevalence of mutated CEBPA, FLT3, GATA2, NPM1, PTPN11, TET2, and 
WT1 and a lower prevalence of mutated KIT, KRAS, and NRAS compared 
with abnormal karyotype-AML [86]. 

1.1.3.1. AML with NPM1 mutation. AML with NPM1 mutation is a new 
WHO-HAEM5 subgroup that can be diagnosed regardless of the blast 
count (i.e. even if BM blasts are < 20%). NPM1 mutation is the most 
frequent molecular abnormality in AML (approximately one-third of 
patients). This frequency increases to 45–65% in patients with CN-AML 
[87]. Isolated NPM1 mutation is included in the ELN-2022 and is asso-
ciated with a favorable prognosis. However, the detection of an 
adverse-prognosis CA [88] leads to reconsideration of the prognosis. 
Indeed, in the ELN-2022, patients with NPM1 mutation and an 
adverse-prognosis CA may be stratified into the high-risk group. 

1.1.3.2. AML with CEBPA mutation. AML with CEBPA mutation is the 
second subgroup of AML defined by a gene mutation in the WHO- 
HAEM5 and ICC-2022. Unlike AML with NPM1 mutation, a blast 
count of > 20% is still required for the diagnosis of AML with CEBPA 
mutation in the WHO-HAEM5. The definition of AML with CEBPA mu-
tation has changed in the WHO-HAEM5 to include biallelic (biCEBPA) as 
well as single mutations located in the basic leucine zipper (bZIP) re-
gion. In contrast, in the ELN2022 only patients with in-frame mutations 
in the bZIP region are diagnosed as “AML with bZIP in frame mutated 
CEBPA mutation “, irrespective of the presence of a mono- or bi-allelic 
mutation, and associated with a good prognosis [5,6]. 

CEBPA mutations are evident in approximately 15% of patients with 
AML. The frequency of CEBPA mutations declines with age (1%–2% in 
patients aged > 60 years) [89]. CEBPA mutations are frequently asso-
ciated with del(9q) [89]. CAs do not influence the good prognosis of 
CEBPA in the ELN-2022. In approximately 10% of cases, one of the 
CEBPA mutations can be a germline variant (see joint article). 

1.1.3.3. AML with FLT3 mutation. FLT3 mutations are found in 
approximately 30% of patients with newly diagnosed AML [90] and are 
localised to two major regions of the protein: FLT3 internal tandem 
duplication (FLT3-ITD) mutations in the juxta-membrane domain and 
FLT3 tyrosine kinase domain (FLT3-TKD) mutations. FLT3-ITD muta-
tions occur in approximately 25% of patients with AML, while FLT3-TKD 
mutations occur in only 7–10% of patients with AML. FLT3-ITD muta-
tions are frequently associated with CAs such as t(15;17) or t(6;9). 
FLT3-TKD mutations are associated with inv(16)/t(16;16) or t(15;17) 
[89]. In the ELN-2022, only FLT3-ITD mutation occurring in the absence 
of a stratifying CA is an intermediate prognostic factor irrespective of the 
allelic ratio. 

1.2. Blastic plasmacytoid dendritic cell (pDC) disorders 

1.2.1. Blastic plasmacytoid dendritic cell (pDC) neoplasm (BPDCN) 
BPDCN is a rare disease characterised by proliferation of tumour cells 

arising from precursors of pDCs. BPDCN can affect children and young 
adults, but it occurs more frequently in older men [5,91]. Myeloid 
neoplasms are diagnosed synchronously or prior to BPDCN in 20–30% of 
cases [92,93]. BPDCN is characterised by a very aggressive clinical 
course, with a median OS of 12–24 months after diagnosis [91]. 

The karyotype of BPDCN is abnormal in two thirds of cases. Among 
them, 90% exhibit a CK (≥3 CAs) showing predominantly recurrent 
deletions or monosomies over gains (mean of 6.5 CAs) [94,95]. Six 
major recurrent CAs, with frequent co-occurrence of three or more, have 
been described: del(5q) (72%), del(6q) (50%), − 9 (28%), del(12p) 
(64%), del(13q)/− 13 (64%), and del(15q)/− 15. Such combinations are 
not described in AML harbouring a CK (or an MK), even in AML with 
cutaneous localisations [42]. 

Chromosomal microarray analyses (CMAs) have confirmed these 
complete or partial chromosomal losses. In a series of 21 patients, − 9, 
− 13, or − 15 was detected in 67% of cases of BPDCN [96]. In addition, 
CMAs delineated the commonly deleted regions resulting in loss of 
transcription factors (12p13/ETV6, 7p12/IKZF1), glucocorticoid re-
ceptors (5q31/NR3C1), and genes involved in cell cycle regulation 
(9p21/CDKN2A-B, 13q14/RB1, and 12p13/CDKN1B) or immune re-
sponses (6q23/IFNGR1 and TNFAIP3). CMA detects deletions of at least 
two of these loci in 90% of cases [97]. Large 17p deletions encompassing 
the TP53 locus are observed in approximately 30% of cases, while focal 
losses of the 8q24 region are detected in 25–40% of cases [96–98]. 

Rearrangement of MYC/8q24 is the most frequent structural CA re-
ported to date (8–38% of cases). In the largest series published, MYC 
rearrangement was detected in 38% of cases and was associated with 
older age, an immunoblastic morphology, and positivity for CD10 [99]. 
Remarkably, the 8q24 breakpoints are scattered over a large region of 3 
Mb. MYC rearrangements mainly result from a t(6;8)(p21;q24) trans-
location that juxtaposes the enhancer of RUNX2 (6p21) near the MYC 
locus, leading to MYC overexpression [100]. Despite its lack of speci-
ficity, t(6;8)(p21;q24) RUNX2::MYC is highly suggestive of the diagnosis 
of BPDCN. Other MYC partners distinct from RUNX2 have been 
described in bands 3p25, 2p12, and Xq24 [101]. The prognostic impact 
of MYC rearrangement has not yet been clearly demonstrated. 

The MYB/6q23 locus is also recurrently rearranged in up to 20% of 
cases of BPDCN [99]. It seems to occur with a high prevalence in chil-
dren [102]. MYB rearrangements involve at least four partner genes 
(ZFAT/8q24, PLEKHO1/1q21, DCPS/11q24, and miR-3134/3p25), 
leading to MYB transcription deregulation [102]. The two most 
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Table 3 
GFCH recommendations for cytogenetic management of acute myeloid leukemia and blastic plasmacytoid dendritic cell 
neoplasms at diagnosis: mandatory karyotype  
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common MYB translocations are t(1;6)(q21;q23) MYB::PLEK01 and t 
(6;8)(q23;q24) MYB::ZFAT [102,103]. 

In summary, the infrequent combinations of deletions and mono-
somies together with an MYC (or MYB) rearrangement constitute the 
peculiar cytogenetic signature of BPDCN. 

A high number of somatic mutations mostly affecting epigenetic 
regulators (TET2, ASXL1, IDH1, IDH2, and EZH2), lymphoid differenti-
ation (IKZF1 and ETV6), and tumour suppressive function (TP53 and 
RB1) and splicing (ZRSR2 and SRSF2) have been described in BPDCN 
(for a review [98,104]). 

The karyotype is of great interest in the diagnostic strategy of BPDCN 
and can discriminate BPDCN from standard AML or ALL. Complemen-
tary FISH analysis using a large MYC probe is recommended. An atypical 
MYC profile (3’ deletion or 5’ deletion) is common and highly suggestive 
of an MYC rearrangement. In children, we recommend performing FISH 
with an MYB probe. 

1.2.2. Mature pDC proliferation (MPDCP) associated with myeloid 
neoplasms 

MPDCP associated with myeloid neoplasms is a new WHO-HAEM5 
entity that includes AML or chronic myelomonocytic leukemia associ-
ated with clonal proliferation of abnormal mature pDCs [5,98,105]. 

The incidence of AML associated with pDC expansion (pDC-AML) is 
estimated to be < 5% among all cases of AML [106]. In contrast to 
BPDCN, the CAs described in pDC-AML are similar to those described in 
classical AML. More specifically, the two most common CAs are del(7q) 
and +13, which are reported in 13% and 7% of cases, respectively 
[106]. Based on the ELN-2017 prognostic stratification, pDC-AML is 
classified into the high-risk group in 80% of cases, which is a higher 
percentage than that in classical AML [74]. Interestingly, a clonal rela-
tionship between leukemic blasts and pDCs was recently demonstrated 
[106,107]. 

A somatic mutation of the transcription factor RUNX1 is detected in a 
large proportion (70%) of patients with pDC-AML. Other recurrently 
mutated genes are SRSF2, ASXL1, TET2, DNMT3A, NRAS, PHF6, IDH1, 
SF3B1, TP53, and FLT3 [106]. 

2. Recommendations 

CBA remains mandatory for the diagnosis of AML and PDC disorders 
[2,60] as well as for classification and risk stratification, and it is rec-
ommended when a new line of treatment is considered for patients who 
develop relapse. Results can and must be provided within 7 days. 

The recommended culture time for karyotype analysis is at least 
overnight (up to 96 h) with the possibility of adding myeloid lineage 
stimulants such as granulocyte colony-stimulating factor. 

BM or PB (the latter in patients with circulating blasts) must be used 
for CBA. In case of karyotype failure, a second sample collected before 
treatment initiation must be analyzed if possible. 

FISH may be necessary in addition to the karyotype. The indications 
for FISH depend on the frequency of the abnormalities, the existence of 
cryptic or hidden stratifying abnormalities, the correlation with the 
morphological aspect, and the difficulty of detecting abnormalities in 
cases of poor mitosis quality or karyotype failure. Details are shown in 
Table 3. 

3. Other cytogenomic techniques 

Alternative testing strategies are now available, and advances in the 
development of high-throughput methods such as microarrays and NGS 
have improved our understanding of the AML pathogenesis. 

3.1. NGS 

In the routine clinical setting, NGS is commonly used with a targeted 
gene panel allowing the detection of not only gene mutations but also 

copy number abnormality. The results are relevant to classification, 
prognosis, and therapeutic decision-making. Targeted RNA sequencing 
is also performed in molecular laboratories to detect a large panel of 
fusion transcripts involving known AML driver genes. 

NGS can also be used in a non-targeted manner to sequence the 
whole genome (detection of numerical and structural abnormalities), 
the whole exome, and the whole transcriptome. Whole-transcriptome 
sequencing allows the detection of all types of transcripts, products of 
gene fusions, and alternative splicing. For example, Wen et al. performed 
whole-transcriptome sequencing and discovered 134 fusion transcripts, 
88 of which were novel, in AML samples, including 29 CN-AMLs [108]. 
The fusions were predominantly formed between adjacent genes on the 
same chromosome. In another study, targeted RNA sequencing resolved 
approximately 60% of rearrangements in cases where only one partner 
gene was known by cytogenetics, including rearrangements involving 
RUNX1, ETV6, PDGFRB, and KMT2A [109]. 

3.2. OGM 

OGM is an emerging chip-based DNA technique with high resolution 
and no need for cell cultivation or DNA amplification. In theory, OGM 
has the ability to yield the information obtained from a combination of 
karyotyping, FISH, and CMA. There is currently little literature on this 
innovative technology specifically in AMLs. 

Neveling et al. compared karyotyping/FISH and OGM in 52 hema-
tological malignancies, 11 of which were AML [110]. They showed high 
concordance and identified some additional structural variants. In a 
study by Gerding et al. [111], OGM performed in 27 adults with AML 
and MDS was concordant with classical karyotyping in 93% of cases, and 
61 additional variants could be detected. More recently, Levy et al. 
performed OGM on a larger cohort of 100 patients with AML. They 
showed that OGM provided new information in 13% of cases [112]. 
With respect to risk stratification of CAs, Creutzig et al. [26] compared 
CBA and FISH analysis with OGM in 24 cases of pediatric AML, and the 
results were concordant in 95% of cases. 

Therefore, OGM is a powerful complementary tool in the cytogenetic 
diagnosis of AML, and it may replace FISH and CMA in the diagnostic 
approach. 

4. Scores including cytogenetics 

The ELN-2022 is one of the most widely used prognostic classifica-
tions. It is mainly based on the ICC-2022 and classifies adult patients 
(18–60 or ≥ 65 years of age) into three risk groups. The ELN-2022 
combines cytogenetic and molecular abnormalities. In the updated 
ELN-2022, two new subtypes (KAT6A::CREBBP and other MECOMr) are 
included as adverse-risk cytogenetic events [2]. 

This prognostic classification is useful for survival stratification of 
patients with AML treated with intensive chemotherapy but is not 
suitable for use in conjunction with novel approaches such as targeted 
therapies (e.g. tyrosine kinase inhibitors) or venetoclax-based combi-
nation therapies, which will continue to improve outcomes in patients 
with AML. Future guidelines should take these developments into ac-
count. The most recent cytogenomic classification of childhood AML 
was established by the I-BFM group in 2012 [26]. 

5. Conclusion 

The nosologic and prognostic classifications of AMLs place genetic 
abnormalities at the forefront. In 2023, CBA remains mandatory for AML 
diagnosis and pDC disorders [2,60] as well as for classification and risk 
stratification, and it is recommended when a new line of treatment is 
considered in patients with relapse. All the information given by the 
karyotype cannot be fully provided by any other technology at present. 
Molecular analysis, including searches for chimeric transcripts and 
mutations, is also mandatory to stratify patients, initiate tailored 
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therapy, and provide measurable disease monitoring [2]. 
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[40] Lugthart S, Gröschel S, Beverloo HB, Kayser S, Valk PJM, van Zelderen-Bhola SL, 
et al. Clinical, molecular, and prognostic significance of WHO type inv(3) 

A. Bidet et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0001
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0001
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0001
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0002
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0002
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0002
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0003
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0003
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0003
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0004
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0004
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0005
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0005
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0005
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0005
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0006
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0006
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0006
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0007
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0007
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0007
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0007
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0007
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0008
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0008
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0008
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0008
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0008
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0009
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0009
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0009
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0009
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0009
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0009
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0010
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0010
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0010
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0011
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0011
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0011
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0011
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0012
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0012
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0012
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0012
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0013
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0013
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0013
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0013
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0014
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0014
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0014
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0015
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0015
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0016
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0016
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0016
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0017
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0017
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0017
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0018
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0018
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0018
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0018
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0019
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0019
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0019
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0019
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0020
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0020
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0020
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0020
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0020
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0021
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0021
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0021
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0021
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0022
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0022
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0022
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0023
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0023
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0023
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0024
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0024
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0024
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0025
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0025
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0026
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0026
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0026
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0026
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0027
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0027
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0027
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0027
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0028
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0028
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0028
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0029
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0029
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0029
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0029
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0030
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0030
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0030
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0031
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0031
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0032
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0032
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0032
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0033
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0033
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0033
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0033
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0034
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0034
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0034
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0034
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0035
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0035
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0035
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0035
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0036
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0036
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0036
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0037
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0037
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0037
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0038
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0038
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0038
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0039
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0039
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0039
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0039
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0039
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0040
http://refhub.elsevier.com/S2452-3186(23)00045-4/sbref0040


Current Research in Translational Medicine 71 (2023) 103421

12

(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute 
myeloid leukemia. J Clin Oncol Off J Am Soc Clin Oncol 2010;28:3890–8. 

[41] Tang Z, Tang G, Hu S, Patel KP, Yin CC, Wang W, et al. Deciphering the com-
plexities of MECOM rearrangement-driven chromosomal aberrations. Cancer 
Genet 2019:233–4. 21–31. 
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[105] Lucas N, Duchmann M, Rameau P, Noël F, Michea P, Saada V, et al. Biology and 
prognostic impact of clonal plasmacytoid dendritic cells in chronic myelomono-
cytic leukemia. Leukemia 2019;33:2466–80. 

[106] Xiao W, Chan A, Waarts MR, Mishra T, Liu Y, Cai SF, et al. Plasmacytoid dendritic 
cell expansion defines a distinct subset of RUNX1-mutated acute myeloid leuke-
mia. Blood 2021;137:1377–91. 

[107] Zalmaï L, Viailly PJ, Biichle S, Cheok M, Soret L, Angelot-Delettre F, et al. Plas-
macytoid dendritic cells proliferation associated with acute myeloid leukemia: 
phenotype profile and mutation landscape. Haematologica 2021;106:3056–66. 

[108] Wen H, Li Y, Malek SN, Kim YC, Xu J, Chen P, et al. New fusion transcripts 
identified in normal karyotype acute myeloid leukemia. PloS One 2012;7:e51203. 

[109] Stengel A, Nadarajah N, Haferlach T, Dicker F, Kern W, Meggendorfer M, et al. 
Detection of recurrent and of novel fusion transcripts in myeloid malignancies by 
targeted RNA sequencing. Leukemia 2018;32:1229–38. 

[110] Neveling K, Mantere T, Vermeulen S, Oorsprong M, van Beek R, Kater-Baats E, 
et al. Next-generation cytogenetics: comprehensive assessment of 52 hemato-
logical malignancy genomes by optical genome mapping. Am J Hum Genet 2021. 
S0002-9297(21)00223-8. 

[111] Gerding WM, Tembrink M, Nilius-Eliliwi V, Mika T, Dimopoulos F, Ladigan- 
Badura S, et al. Optical genome mapping reveals additional prognostic informa-
tion compared to conventional cytogenetics in AML/MDS patients. Int J Cancer 
2022;150:1998–2011. 

[112] Levy B, Baughn LB, Akkari Y, Chartrand S, LaBarge B, Claxton D, et al. Optical 
genome mapping in acute myeloid leukemia: a multicenter evaluation. Blood Adv 
2023;7:1297–307. 

Audrey Bideta,*, Julie Quessadab,c, Wendy Cuccuinid, 
Matthieu Decampe, Marina Lafage-Pochitaloffb, Isabelle Luquetf, 

Christine Lefebvreg, Giulia Tueurh, on behalf of the Groupe 
Francophone de Cytogénétique Hématologique (GFCH) 
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g Unité de Génétique des Hémopathies, Service d’Hématologie Biologique, 
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