

Optical genome mapping refines cytogenetic diagnostics, prognostic stratification and provides new molecular insights in adult MDS/AML patients

Estelle Balducci and Lucile Couronné

Laboratory of Onco-Hematology, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France

Patients and samples

^{*}Adult MDS/AML Patients were selected based on their cytogenetic profile to include a roughly equivalent number of patients with normal or abnormal karyotype in each entity

Purpose of the study

- Evaluation of the performances of OGM in the detection of somatic cytogenetic abnormalities in MDS/AML
- Assessment of the clinical utility of OGM in the risk stratification based on the established international prognostic risk scores in MDS/AML
- Identification of new candidates in MDS/AML pathogenesis

OGM quality data

- Average coverage: 386X (124-581X)
- 12/68 samples: fragmented DNA samples
- For 6 of these cases: background noise made the interpretation of the CNV tool impossible

Artefactual CNVs due to low quality DNA, N50(>150Kb)=0.21 (Patient 19).

Examples of artefactual abnormalities rendered by OGM

Data interpretation

Step 1: Prefiltration according to the Bionano Genomics recommended criteria

- Size cutoff: 5Kb for insertions/deletions detected by the SV tool, and 500Kbp for the CNV tool
- CNV fractional analysis: <1.8 for deletions > 2.2 for duplications

Step 2: Exclusion of artefactual and polymorphic variants

- Variants detected in healthy individuals by comparison to the Bionano Genomics database of 200 human control samples and to the Database of Genomic Variants (DGV)
- Variants overlapping with difficult-to-map regions by comparison to the Bionano Genomics database of masked genomic regions
- Translocations with an incorrect mapping or close to difficult-tomap regions

Step 3: Inclusion of relevant SV and CNVs

- All CNVs with size > 500Kb
- All translocations not considered as artefactual in step 2
- All variants regardless of their size if they overlap one of the genes defined as relevant in malignant hematological diseases

> Flowchart for filtering OGM variants

OGM precisely detects most of the significant cytogenetic abnormalities observed by routine cytogenetics

> Examples of variants detected by OGM

*Calculated on cytogenetic abnormalities influencing the MDS and AML risk scores.

Discordant results:

- -Y n=1
- +8 n=2

Abnormalities missed by OGM analysis

Patient ID	Diagnosis	Karyotype results*	Probable cause for missing the cytogenetic abnormalities		
Low subclonal CNVs involving a whole chromosome					
1	AML	47,XX,add(1)(p31),del(6)(q14q22),+8,add(15)(q?),add(18)(p11),add(22)(q21)[12]/	Selective advantage of tumor sub-clone under culture		
		47,idem,add(8)(p?21)[6]/48,idem,+5[2]			
25	AML	47,XY,+8[4]/92,XXYY[7]/46,XY[14]	Below the limit of detection of OGM		
112	AML	47,XY,+8[18]/48,idem,+13[1]/46,XY[1]	Below the limit of detection of OGM		
222	MDS	46,XX,der(21)t(?1;21)(?q12;p11)[12]/47,idem,+8[3]/46,XX[6]	Below the limit of detection of OGM		
234	MDS	45,X,-Y[4]/46,XY[16]	Below the limit of detection of OGM		
Clone with a gain of a whole batch of chromosomes					
25	AML	47,XY,+8[4]/ <mark>92,XXYY</mark> [7]/46,XY[14]	Tetraploidy not currently detected by OGM		
145	MDS	44,XX,add(4)(q32),-7,del(9)(p12),-18[5]/44,idem,del(5)(q13q34)[5]/75,idemx2,-X,-	Triploidy not currently detected by OGM		
		X,-3,-5,-5,-11,-11,-12,-12,-14,-16,-16[cp4]/46,XX[3]			
Low subclones					
58	MDS	45~49,XY,t(4;6)(q2?;q2?),del(5)(q11),del(12)(p11p13),-	Below the limit of detection of OGM		
		21,+2~4mar[8]/46,XY,add(1)(q31)[2]/46,XY[4]			
59	AML	43,XY,-5,del(6)(q21q25),-7,-17,-18,+mar[16]/42,idem,-6,add(12)(q24),-13,-14,-	Below the limit of detection of OGM		
		16,+3mar[3]/46,XY[1]			
SVs which breakpoints located in poorly covered areas					
130	MDS	46,XY,del(5)(q15q34),del(7)(q22q36),add(14)(p10)[5]/46,XY[2]	Breakpoint localized in a non-covered area with the OGM		
198	AML	54,XY,+1,del(5)(q21q34),+8,+8,+9,+10,add(14)(p11),+21,+22[6]/46,idem,+i(11q10	Breakpoint localized in a non-covered area with the OGM		
)[5]			
222	MDS	46,XX,der(21)t(?1;21)(?q12;p11)[12]/47,idem,+8[3]/46,XX[6]	Breakpoint localized in a non-covered area with the OGM		

OGM reveals unexpected complexity of some cytogenetic abnormalities

Example of complex SV affecting MECOM gene revealed by OGM (Patient 122)

OGM resolves chromosomal abnormalities not identifiable by karyotype

47,XX,add(1)(p31),del(6)(q14q22),+8,add(15)(q?),add(18)(p11),add(22)(q21)

Example of complex karyotype analyzed by OGM in Patient 1

OGM identifies recurrent complex rearrangements in complex karyotype

- ➤ Complex rearrangements involving chromosome 12 n=3/13 pts with complex karyotype
- Complex rearrangements involving chromosome 21
 n=4/13 pts with complex karyotype

ETV6 deletion: 3/3

ERG amplification: 4/4 pts
RUNX1 amplification: 3/4 cases

OGM identifies other relevant cytogenetic abnormalities not seen at karyotype

KMT2A-PTD n=7/41 AML cases

UPN 17

	AML n=41	MDS n=27
Normal karyotype	47.3% (9/19)	16.7% (2/12)
Simple abnormal karyotype (<3 abn)	50% (6/12)	22.2% (2/9)
Complex karyotype (≥3 abn)	87,5% 7/8	100% (5/5)

NUP98
rearrangements
n=2/41 AML cases

UPN 157

MYB alterationsn=3/41 AML cases UPN 1

OGM successfully predicts risk score as karyotype in most AML/MDS cases and refines it in a subset of patients

Concordance: 21/27

Favorable → Poor n=2
Intermediate → very poor n=1
Intermediate → Poor n=1
Intermediate → Favorable n=1
Very Favorable → Favorable n=1

Concordance: 39/41

Adverse → Intermediate n=1
Favorable → Intermediate n= 1

Discussion

- Technical advantages of OGM
 - Minimum technical delay for OGM results is 6-7 days
 - Useful in case of karyotype failures (1,5 million cells, non-cultured cells)
- Technical limitations of OGM
 - Dependent on the quality of the DNA
 - Difficulty to map abnormalities in poorly covered areas of the genome
 - No detection of low subclonal CNVs involving whole chromosomes
 - No detection of independent clones

Discussion

- Biological advantages of OGM
 - detection of balanced cytogenetic abnormalities, unlike CGH/SNP array technology.
 - detection of unbalanced cytogenetic abnormalities, with a higher sensitivity than CGH/SNP array analysis.
 - \rightarrow Concordance rate = 95% (53/56)
 - elucidation of poorly identified or unidentified karyotype abnormalities due to poor karyotype quality and/or complex nature of abnormalities.
 - e.g. complex rearrangement and chromothripsis of chromosome 12 (n=3) or 21 (n=4)
 - detection of cryptical balanced and unbalanced cytogenetic abnormalities not observed in the karyotype.
 - Detection of cytogenetic abnormalities not seen at routine cytogenetics in 33% (9/27) and 53% (22/41) of the MDS and AML respectively.
 - Detection of recurrent pathogenic SVs such as *NUP98* rearrangement, KMT2A-PTD, and MYB cytogenetic abnormalities.

Discussion

Detection of new candidates as MYB gene

RESEARCH LETTER

TO THE EDITOR:

Myb drives B-cell neoplasms and myeloid malignancies in vivo

Tim Pieters, ¹⁻³,* André Almeida, ¹⁻³,* Sara T'Sas, ¹⁻³ Kelly Lemeire, ^{4,5} Tino Hochepied, ^{4,5} Geert Berx, ³⁻⁵ Alex Kentsis, ⁶⁻⁸ Steven Goossens, ¹⁻³,9,* and Pieter Van Vlierberghe ¹⁻³,*

¹Department of Biomolecular Medicine, and ²Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium; ³Cancer Research Institute Ghent (CRIG), Ghent, Belgium; ⁴Department of Biomedical Molecular Biology, and ⁵Center for Inflammation Research, VIB, Ghent, Belgium; ⁶Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY; ⁷Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Cornell Medical College, Cornell University, New York, NY; ⁸Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY; and ⁹Department of Diagnostic Sciences, Ghent University, Ghent, Belgium

May 2022

Perspectives

- Identification of new cytogenetic abnormalities
 - Significance
 - Prognosis
 - Interpretation of variants of unknown significance

- Integration of OGM in the diagnostic workup of hematological diseases
 - International rules for OGM interpretation and nomenclature
 - Definition of complexity for OGM vs karyotype
 - New prognostic risk scores integrating OGM and mutational data
 - Place of OGM in the diagnostic work-up of AML and MDS samples

Remerciements

➤ Hôpital Necker-Enfants Malades Laboratoire d'onco-hématologie

Vahid Asnafi

Patrick Villarese

Aurore Touzart

Ludovic Lhermitte

Thomas Steimle

Chantal Brouzes

Agata Cieslak

Toute l'équipe technique : Molly Sabado, Léna Gernez, Cécile Fournel, Matthieu Bertrand, Camille Gillet

Service d'hématologie

Olivier Hermine Felipe Suarez

Autres cliniciens et biologistes ayant participé à l'étude Luc Darnige, Emilie Ronez, Sylvain Clauser, Katayoun Jondeau, Marie-Dominique Venon

➤ Hôpital Cochin Laboratoire d'onco-hématologie

Olivier Kosmider

Eugénie Duroyon

Marie Templé

Chloé Friedrich

Michaela Fontenay

Nicolas Chapuis

Carole Almire

Service d'hématologie

Didier Bouscary Rudy Birsen Justine Decrooq

> Staff Bionano

Lam, Cyprien, Yannick, Sandra, Guillaume